

Welcome to nMPyC’s documentation!

nMPyC is a Python library for solving optimal control problems via model predictive control (MPC).

nMPyC can be understood as a blackbox method. The user can only enter the desired optimal control problem without having much knowledge of the theory of model predictive control or its implementation in Python. Nevertheless, for an advanced user, there is the possibility to adjust all parameters.

This library supports a variety of discretization methods and optimizers including CasADi [https://web.casadi.org/] and SciPy [https://scipy.org/] solvers.

	In summary, nMPyC
	
	solves nonlinear finite horizon optimal control problems

	solves nonlinear optimal control problems with model predicitve control (MPC)

	uses algorithmic differentation via CasADi [https://web.casadi.org/]

	can chose between different discretization methods

	can chose between different solvers for nonlinear optimization (depending on the problem)

	supports time-varying optimal control problems

	supports the special structure of linear-quadratic optimal control problems

	supports discounted optimal control problems

	can save and load the simulation results

The nMPyC software is Python based and works therefore on any OS with a Python distribution (for more precise requiremnents see the Installation section).
nMPyC has been developed by Jonas Schießl and Lisa Krügel under the supervision of Prof. Lars Grüne at the Chair of Applied Mathematic [https://num.math.uni-bayreuth.de/en/index.html] of University of Bayreuth.
nMPyC is a further devolpement in Python of the Matlab code [http://numerik.mathematik.uni-bayreuth.de/~lgruene/nmpc-book/matlab_nmpc.html] that was implemented for the NMPC Book from Lars Grüne and Jürgen Pannek [GruneP17].

Contents

	Installation

	Getting Started

	Basics of model predictive control

	API Reference

	Examples

	Templates

	FAQ

	How to Cite

	References

Installation

Requirements

The nMPyC package is dependent on the following libraries:

	CasADi [https://web.casadi.org]

	NumPy [https://numpy.org]

	matplotlib [https://matplotlib.org/stable/index.html]

	SciPy [https://scipy.org]

	dill [https://dill.readthedocs.io/en/latest/dill.html]

	osqp [https://osqp.org/]

Installation using PIP

The easiest way to install the nMPyC package is to use PIP. To do so, you just need to run the command line

pip install nmpyc

The main advantage of this method is that the package is automatically added to the Python default path and all dependencies are installed.

Additionally you can update the package by running

pip install nmpyc --upgrade

Installation by Source

To install the Python package by source, the source code from GitHub [https://github.com/nMPyC/nmpyc] has to be downloaded.
This can be done via Git using the command

git clone https://github.com/nMPyC/nmpyc

Now the toolbox can be used by importing the package according to its storage path in the Python code by adding it to the Python default path.
To realize the letter case you can navigate to the location of the package and use

pip install .

This command will automatically add the package to the Python default path and install the required Python packages and their dependencies.

Getting Started

Import nMPyC

After the successfull installation of the nMPyC package, nMPyC has to be imported to our code.
This can be done as shown in the following code snippet

Add nMPyC to path (if necessary)
import sys
sys.path.append('../../path-to-nmpyc')

Import nmpyc
import nmpyc

Note that the first two lines can be omitted if nMPyC has already been added to the Python default path as described in the Installation section. In this case the command import nmpyc is sufficient to import the nMPyC library.

Note

Please use the nmpyc.nmpyc_array functions and the nmpyc.nmpyc_array.array class for the calculations in the code to ensure error-free functionality of the program. Further informations about this issue can be found in API References and in the FAQ section.

Creating the System Dynamics

To define the system dynamics of the optimal control problem, we have to create a nmpyc.system object.
We can define the possibly time-dependent and nonlinear system dynamics using a function of the form

def f(t,x,u):
 y = nmpyc.array(nx)
 ...
 return y

If this function is created, the system can be initialized by calling

system = nmpyc.system(f,nx,nu,system_type)

Where nx is the dimension of the state, nu is the dimension of the control variable, and system_type is a string indicating whether the system is continuous (continuous) or discrete (discrete).

Furthermore, the parameters sampling_rate (sampling rate), t0 (initial time) and method can optionally be adjusted during the initialization of the system. The value of method determines the used integration method for the discretization of the differential equation in the continuous case. By default the CasADi integrator cvodes is used.

Further options of the used integration method can be defined by the command

system.set_integratorOptions(dict())

For more informations (also about the parameters and their standard values) see the API-References nmpyc.system.system.

Creating the Objective

To define the objective, we need to create – similar to the system dynamics – a nmpyc.objective object.
To do so, we first define the stage cost

def l(t,x,u):
 ...
 return y

and add, optionally, a terminal cost of the form

def F(t,x):
 ...
 return y

Now we can initialize the objective by calling

objective = nmpyc.objective(l, F)
Or alternatively without terminal costs
objective = nmpyc.objective(l)

For more informations see the API-References nmpyc.objective.objective.

Creating the Constraints

The optimal control problem can be extended with other constraints besides the necessary system dynamics.
For this reason, we must first create an empty nmpyc.constraints object using the command

system = nmpyc.constraints()

We can now add the desired constraints to this object step by step.
These constraints can be created in different ways.
First, we can add box constraints in the form of bounds.

constraints.add_bound('lower', 'control', lbu) # lower bound for control
constraints.add_bound('upper', 'control', ubu) # upper bound for control

Here lbu or lbx is an nmpyc.nmpyc_array.array of dimension (1,nu) or (nu,1).
To add bounds for the state or terminal state, replace control with state or terminal in the above code and adjust the dimension of the array accordingly.

In addition to box constraints, general inequality and equality constraints can also be inserted.

Equality constraint h(t,x,u) = 0
def h(t,x,u):
 y = mpc.array(len_constr)
 ...
 return y
constraints.add_constr('eq', h)

Inequality constraint g(t,x,u) >= 0
def g(t,x,u):
 y = mpc.array(len_constr)
 ...
 return y
constraints.add_constr('ineq', g)

Terminal constraints of the form \(H(t,x) = 0\) or \(G(t,x) \geq 0\) can also be added.

constraints.add_constr('terminal_eq', H)
constraints.add_constr('terminal_ineq', G)

Moreover it is possible to add linear equality and inequality constraints.
For this purpose see nmpyc.constraints.constraints.add_constr().
For further general informations see the API-References nmpyc.constraints.constraints.

Running Simulations

After initializing all necessary objects, we can run simulations for our problem. We first create a mpc.model object and combine the different parts of the optimal control problem by calling

model = nmpyc.model(objective, system, constraints)

The nmpyc.constraints object is optional and can be omitted for a problem without constraints.
Modyfying the default settings of the optimization, can be done with the help of the commands

model.opti.set_options(dict())
model.opti.set_solverOptions(dict())

For more informations about this methods see nmpyc.model.model.opti.

To start an open loop simulation, we execute the command

u_ol, x_ol = model.solve_ocp(x0,N,discount)

and for a closed loop simulation

res = model.mpc(x0,N,K,discount)

Here x0 is a nmpyc.nmpyc_array.array which defines the initial value, N is the MPC horizon and the parameter K defines the number of MPC iterations. The parameter discount is optional and defines the discount factor (the default is 1).

The result of the simulation can now be shown in the console by calling

print(res)

and as a visual output by calling

res.plot()

By default, the states and controls are displayed in two subplots. By passing a string as the first parameter (=args), the plot can be customized. For example, by calling

res.plot('state')

only the states are plotted. Other keywords are control for the control, cost for the stage costs, and phase to make a phase portrait of two states or controls.
Furthermore, the plots displayed in this way can be additionally adjusted by further prameters, see nmpyc.result.result.plot().

Further, the model and the simulation results can be saved for later use with the functions

model.save('path')
res.save('path')

These saved files can then be loaded with the help of

model = nmpyc.model.load('path')
res = nmpyc.result.load('path')

Advanced topics

The procedure described above is only an excerpt of the possibilities of the nMPyC Python library.
For example, it is also possible to create autonomous systems and use the linear quadratic structure of a problem.
For further informations see the Examples and Templates section.
And for the implementation of linear system dynamics and quadratic costs, see also nmpyc.system.system.LQP() and nmpyc.objective.objective.LQP().

Basics of model predictive control

Model predictive control (MPC) is an optimized-based method for obtaining an approximately optimal feedback control for an optimal control problem on an infinite or finite time horizon. The basic idea of MPC is to predict the future behavior of the controlled system over a finite time horizon and compute an optimal control input that, while ensuring satisfaction of given system constraints, minimizes the objective function. In each sampling instant a finite horizon open-loop optimal control problem is solved to calculate the control input. More precisley, this control input is used to define the feedback which is applied to the system until the next sampling instant, at whicht the horizon is shifted and the procedure is repeated again.

Optimal control problems

In order to describe the functionality of MPC we consider optimal control problems. To this end, we consider possibly nonlinear difference equations of the form

\[\begin{split}x(k+1,x_0) &= f(x(k,x_0),u(k)), \quad k = 0,\dots,N-1, \\
x(0) &= x_0\end{split}\]

with \(N\in\mathbb{N}\) or discretized differential equations.

Further, we impose nonempty state and input constraint sets \(\mathbb{X}\subseteq\mathbb{R}^{n}\) and \(\mathbb{U}\subseteq\mathbb{R}^m\), respectively, as well as a nonempty terminal constraint set \(\mathbb{X}_0\subseteq\mathbb{R}^n\).

Now we use optimal control to determine \(u(0),\dots,u(N-1)\). For this reason, we fix a stage cost \(\ell:\mathbb{X}\times\mathbb{U}\to\mathbb{R}\) which may be a very general function and a optional terminal cost \(F:\mathbb{X}\to\mathbb{R}\). Regardless which cost function is used the objective function is defined by

\[J^N(x_0,u(\cdot)):=\sum_{k=0}^{N-1}\ell(x(k,x_0),u(k))\]

without terminal cost or by

\[J^N(x_0,u(\cdot)):=\sum_{k=0}^{N-1}\ell(x(k,x_0),u(k))+ F(x(N,x_0))\]

with terminal cost.

In summary, an optimal control problem without terminal conditions is given by

 \begin{equation}
 \begin{split}
 \min_{u(\cdot)\in\mathbb{U}}J^N(x_0,u(\cdot)) &= \sum_{k=0}^{N-1}\ell(x(k,x_0),u(k))\\
 \text{s.t.}\quad x(k+1,x_0)&=f(x(k,x_0),u(k)),\quad k = 0,\dots, N-1\\
 x(0)&= x_0\\
 x&\in\mathbb{X}
 \end{split}
 \end{equation}
and an optimal control problem with terminal conditions is given by

 \begin{equation}
 \begin{split}
 \min_{u(\cdot)\in\mathbb{U}}J^N(x_0,u(\cdot)) &= \sum_{k=0}^{N-1}\ell(x(k,x_0),u(k))+F(x(N,x_0))\\
 \text{s.t.}\quad x(k+1,x_0)&=f(x(k,x_0),u(k)),\quad k = 0,\dots, N-1\\
 x(0)&= x_0\\
 x\in\mathbb{X},\quad & x(N,x_0)\in\mathbb{X}_0
 \end{split}
 \end{equation}
Additionally, with nMPyC it is possible to add constraints to the optimal control problem.

The basic MPC algorithm

Regardless of the type of the optimal control problem, the MPC algorithm is given by:

	At each time instant \(j=0,1,2,\dots:\)
	
	Measure the state \(x(j)\in\mathbb{X}\) of the system.

	Set \(x_0:=x(j)\), solve the optimal control problem (with or without terminal conditions) and denote the obtained optimal control sequence by \(u^\star(\cdot)\in\mathbb{U}^N(x_0)\).

	Define the MPC-feedback value \(\mu^N(x(j)):=u^\star(0)\in\mathbb{U}\) and use this control value in the next sampling period (apply the feedback to the system).

Notes and extensions

A special case of an optimal control problem is a linear-quadratic problem. There, the stage cost is defined as a quadratic function and the dynamics are linear. Thus, the linear-quadratic optimal control problem is given by

 \begin{equation}
 \begin{split}
 \min_{u(\cdot)\in\mathbb{U}}J^N(x_0,u(\cdot)) &= \sum_{k=0}^{N-1}\ell(x(k,x_0),u(k))+F(x(N,x_0))\\
 &= \sum_{k=0}^{N-1}x(k,x_0)^T Q x(k,x_0) +u(k)^T R u(k)+ 2x(k,x_0)^TN u(k) \\
 & \qquad \quad +x(N,x_0)^T P x(N,x_0)\\
 \text{s.t.}\quad x(k+1,x_0)&=Ax(k,x_0)+Bu(k),\quad k = 0,\dots, N-1\\
 x(0)&= x_0\\
 x\in\mathbb{X},\quad & x(N,x_0)\in\mathbb{X}_0
 \end{split}
 \end{equation}
where \(Q, R, N, P\) are weightening matrices and \(A, B\) the system matrices, each respectively of suitable dimension. Further, the constraints have to be also linear and of the form

\[Ex+ Fu \geq h.\]

Note

nMPyC supports a time dependent formulation of optimal control problem. Hence, all functions, as \(f, \ell, F\), can depend on the time instance \(j\).

Note

nMPyC supports also discounted optimal control problems. In the discrete case the objective is defined as

\[J^N(x_0,u(\cdot)):=\sum_{k=0}^{N-1}\beta^k\ell(x(k,x_0),u(k))\]

with \(\beta\in(0,1)\) the discount factor.

Further reading

For further reading and more theoretical insights we kindly refer to [GruneP17]

API Reference

	system

	A class used to define the system dynamics of an optimal control problem.

	objective

	A class used to define the objective of the optimal control problem.

	constraints

	Class used to define the constraints of the optimnal control problem.

	model

	Class that contains all the components of the optimal control problem.

	result

	Class used to store the simulation results of the MPC simulation.

	nmpyc_array

	Module for array definition and computation.

system

	
class system(f, nx, nu, system_type='discrete', sampling_rate=1.0, t0=0.0, method='cvodes')

	A class used to define the system dynamics of an optimal control problem.

The dynamics can be discrete or continuous.
A discrete system is defined by a difference equation

\[x(t_{k+1}) = f(t_k,x(t_k),u(t_k))\]

and a continous system is defined by the ordinary differential equation

\[\dot{x}(t_k)=f(t_k,x(t_k),u(t_k))).\]

In the letter case the differential equation will be discretized by a choosen
integration method.

	Parameters

	
	f (callable) – Function defining the right hand side of the system dynamics of
the form \(f(t,x,u)\) or \(f(x,u)\) in the
autonomous case. See also f.

	nx (int) – Dimension of the state. Must be a positive integer.
See also nx.

	nu (int) – Dimension of the control. Must be a positive integer.
See also nu.

	system_type (str, optional) – String defining if the given system dynamics are
discrete or continuous. The default is ‘discrete’.

	sampling_rate (float, optional) – Sampling rate defining at which time instances the
dynamics are evaluated. The default is 1.

	t0 (float, optional) – Initial time for the optimal control problem. The default is 0.
See also t0.

	method (str, optional) – String defining which integration method should be used to discretize
the system dynamics. The default is ‘cvodes’.
For further informations about the provided integrators see
method.

Attributes

	system.autonomous

	If True, the system is time-invariant.

	system.f

	Right hand side \(f(t,x,u)\) of the system dynamics.

	system.h

	Sampling time \(h\) of the system.

	system.method

	Integration method for discretization of the dynamics.

	system.nu

	Dimension of the control.

	system.nx

	Dimension of the state.

	system.system_type

	String defining whether the dynamics are discrete or continuous.

	system.t0

	Initial time of the optimal control problem.

	system.type

	Indicating whether the system dynamics are linear.

Methods

	system.LQP

	Initialize the system with linear dynamics.

	system.load

	Loads a nMPyC system object from a file.

	system.save

	Saving the system to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

	system.set_integratorOptions

	Set options for the integration method.

	system.system

	Evaluate right hand side \(f(t,x,u)\) of the dynamics.

	system.system_discrete

	Evaluate discretized right hand side of the system dynamics.

autonomous

Class property.

	
system.autonomous

	If True, the system is time-invariant.

The right hand side of the dynamics \(f(t,x,u)\)
are not explicitly dependent on the time variable \(t\).
In this case \(f(t,x,u)=f(x,u)\) holds.

	Type

	bool

f

Class property.

	
system.f

	Right hand side \(f(t,x,u)\) of the system dynamics.

The return value of this attribute depends on how the system is initialized.
If it is initialized as a linear system by LQP() a list containing the arrays defining the
system dynamics are returned.
If the system is initalized by a possible nonlinear callable function this function is returned.
Note, that even if autonomous is True the returned funtion depends on the time
and always has the form \(f(t,x,u)\).

	Type

	callable or list of array

h

Class property.

	
system.h

	Sampling time \(h\) of the system.

This attribute defines at which time instances the
dynamics are evaluated.
This means the time \(t_k\) is given by the equation

\[t_k = t_0 + kh.\]

In addition, the control values are assumed to be constant during a sampling instance
and can only be change at the times \(t_k\).

	Type

	float

method

Class property.

	
system.method

	Integration method for discretization of the dynamics.

The following integrators are currently supported:

	from CasADi [http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html]: cvodes, idas, collocation, oldcollocation and rk

	from SciPy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html]: RK45, RK23, DOP853, Radau, BDF and LSODA

	from nMPyC: rk4, euler und heun (fixed step integration methods)

	Type

	str

nu

Class property.

	
system.nu

	Dimension of the control.

The value of \(u(t)\) at a given time \(t_k\)
is a element of \(\mathbb{R}^{nu}\).
In the linear case this value equals with the dimension
of the columns of the control matrix \(B \in \mathbb{R}^{nx \times nu}\).

	Type

	int

nx

Class property.

	
system.nx

	Dimension of the state.

The value of \(x(t)\) at a given time \(t_k\)
is a element of \(\mathbb{R}^{nx}\).
In the linear case this value equals with the dimension
of the system matrix \(A \in \mathbb{R}^{nx \times nx}\).

	Type

	int

system_type

Class property.

	
system.system_type

	String defining whether the dynamics are discrete or continuous.

A discrete system is defined by a difference equation

\[x(t_{k+1}) = f(t_k,x(t_k),u(t_k))\]

and a continous system is defined by the ordinary differential equation

\[\dot{x}(t_k)=f(t_k,x(t_k),u(t_k))).\]

	Type

	str

t0

Class property.

	
system.t0

	Initial time of the optimal control problem.

The initial state \(x_0\) is measured
at time \(t_0\).
The state \(x(t)\) is evaluated at the time instances
\(t_0 + kh\) during the MPC loop where \(h\) is
the sampling_rate.

	Type

	float

type

Class property.

	
system.type

	Indicating whether the system dynamics are linear.

If LQP, the system dynamics are linear.
The right hand side of the system dynamics
is given by

\[f(x,u) = Ax + Bu.\]

It also implies that the system is autonomous.

If the system dynamics are not initialized as linear with the LQP()
method this attribute has the value NLP.

	Type

	str

LQP

Class method.

	
LQP(A, B, nx, nu, system_type='discrete', sampling_rate=1.0, t0=0.0, method='euler')

	Initialize the system with linear dynamics.

In this case the right hand side of the dynamics has the
form :

\[f(x,u) = Ax+Bu\]

which is always autonomous.
If not a fixed step method is choosen for integration the optimizer
can not use the linear structure of the problem during the
optimization process.

	Parameters

	
	A (array) – Matrix definig the linear state input on the right hand side
of the dynamics.

	B (array) – Matrix definig the linear state input on the right hand side
of the dynamics.

	nx (int) – Dimension of the state. Must be a positive integer.
See also nx.

	nu (int) – Dimension of the control. Must be a positive integer.
See also nu.

	system_type (str, optional) – String defining whether the given system dynamics are
discrete or continuous. The default is ‘discrete’.

	sampling_rate (float, optional) – Sampling rate defining at which time instances the
dynamics are evaluated. The default is 1.

	t0 (float, optional) – Initial time for the optimal control problem. The default is 0.
See also t0.

	method (str, optional) – String defining which integration method should be used to discretize
the system dynamics. The default is ‘euler’.
For further informations about the provided integrators see
method.

	Returns

	lqp – nMPyC-system class object suitable to define a linear
quadratic optimal control problem..

	Return type

	system

load

Class method.

	
load(path)

	Loads a nMPyC system object from a file.

The specified path must lead to a file that was previously saved with
save().

	Parameters

	path (str) – String defining the path to the file containing the nMPyC
system object.

For example

>>> system.load('system.pickle')

will load the system previously saved with save().

save

Class method.

	
save(self, path)

	Saving the system to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

The path can be absolut or relative and
the ending of the file is arbitrary.

	Parameters

	path (str) – String defining the path to the desired file.

For example

>>> system.save('system.pickle')

will create a file system.pickle containing the nMPyC system object.

set_integratorOptions

Class method.

	
set_integratorOptions(self, options)

	Set options for the integration method.

	Parameters

	options (dict) – Dictionary containing the keywords of the required options
and their values.

The available options are depending on the choosen method of integration.
For the nMPyC integrators the only available option is number_of_finit_elements
which must be an int greater than zero and defines how many discretation steps are
computed during one sampling period defined by the sampling rate.
The available options for the CasADi integrators can be found at Sourceforge [http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html] and for the SciPy integrators at the Scipy documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html].

system

Class method.

	
system(self, t, x, u)

	Evaluate right hand side \(f(t,x,u)\) of the dynamics.

	Parameters

	
	t (float) – Time instant at which the system dynamics are evaluated.

	x (array) – State value at which the system dynamics are evaluated.

	u (array) – Control value at which the system dynamics are evaluated.

	Returns

	Value of the possible not discrete right hand side of the dynamics
evaluated at the given inputs.

	Return type

	array

system_discrete

Class method.

	
system_discrete(self, t, x, u)

	Evaluate discretized right hand side of the system dynamics.

	Parameters

	
	t (float) – Time instant at which the system dynamics are evaluated.

	x (array) – State value at which the system dynamics are evaluated.

	u (array) – Control value at which the system dynamics are evaluated.

	Returns

	Value of the discretized right hand side of the dynamics
evaluated at the given inputs.

	Return type

	array

objective

	
class objective(stagecost, terminalcost=None)

	A class used to define the objective of the optimal control problem.

The objective depends on the stage cost and optional on terminal cost and has the form

\[J(t,x,u,N) := \sum_{k=0}^{N-1} \ell(t_k,x(t_k),u(t_k)) + F(t_N,x(t_N)).\]

The values of the times \(t_k\) are defined by initializing the nmpyc.system.system.
For the slightly different form of the objective in the discounted case see discount.

	Parameters

	
	stagecost (callable) – A function defining the stage cost of the optimal control problem.
Has to be of the form \(\ell(t,x,u)\) or \(\ell(x,u)\) in the autonomous case.
See also stagecost.

	terminalcost (callable, optional) – A function defining the terminal cost of the optimal control
problem. Has to be of the form \(F(t,x)\) or \(F(x)\) in the autonomous
case. If None, no terminal cost is added.
The default is None. See also terminalcost.

Attributes

	objective.autonomous

	If True, the objective is autonomous.

	objective.discount

	The discount factor of the objective.

	objective.stagecost

	Stage cost \(\ell(t,x,u)\).

	objective.terminalcost

	Terminal cost \(F(t,x)\).

	objective.type

	Indicating whether the objective is quadratic or nonlinear.

Methods

	objective.J

	Evaluate objective function of the OCP.

	objective.LQP

	Initialize a quadratic objective.

	objective.add_termianlcost

	Add terminal cost to the objective.

	objective.endcosts

	Evaluate termninal cost of the objective.

	objective.load

	Loads a nMPyC objective object from a file.

	objective.save

	Saving the objective to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

	objective.stagecosts

	Evaluate stage cost of the objective.

autonomous

Class property.

	
objective.autonomous

	If True, the objective is autonomous.

The stage cost and terminal cost
of the objective \(J(t,x,u,N)\)
are not explicitly dependend on the time variable \(t\).
In this case \(J(t,x,u,N)=J(x,u,N)\) holds.

	Type

	bool

discount

Class property.

	
objective.discount

	The discount factor of the objective.

For a discount factor \(\delta \in (0,1]\) the
discounted objective function is given by

\[J(t,x,u,N) = \sum_{k=0}^{N-1} \delta^k \ell(t_k,x(t_k),u(t_k)) + F(t_N,x(t_N)).\]

By default the discount factor is equal to 1 \(\delta = 1\). Then, we name the problem undiscounted.
The discount factor for the OCP of the MPC simulation can be set
when the nmpyc.model.model.mpc() method is called.

	Type

	float

stagecost

Class property.

	
objective.stagecost

	Stage cost \(\ell(t,x,u)\).

The return value of this attribute depends on how the
objective is initialized.
If it is initialized as a quadratic objective by LQP() a list
containing the arrays defining the stage cost are returned.
If the obejctive is initalized by possibly nonlinear callable functions
the function defining the stage cost is returned.
Note, that even if autonomous is True the returned function depends
on the time \(t\) and always has the form \(\ell(t,x,u)\).

	Type

	callable or list of array

terminalcost

Class property.

	
objective.terminalcost

	Terminal cost \(F(t,x)\).

The return value of this attribute depends on how the
objective is initialized.
If it is initialized as a quadratic objective by LQP() the
array defining the terminal cost is returned.
If the obejctive is initalized by possibly nonlinear callable functions
the function defining the terminal cost is returned.
Note, that even if autonomous is True the returned function depends
on the time \(t\) and always has the form \(\ell(t,x,u)\).

	Type

	callable or array

type

Class property.

	
objective.type

	Indicating whether the objective is quadratic or nonlinear.

If LQP, the objective is quadratic.
Then the stage cost
is given by

\[\ell(x,u) = x^TQx + u^TRu + 2x^TNx.\]

and the terminal cost is given by

\[F(x) = x^TPx.\]

It also implies that the system is autonomous.

If the objective is not initialized as quadratic function with the LQP()
method this attribute holds the value NLP.

	Type

	str

J

Class method.

	
J(self, t, x, u, N)

	Evaluate objective function of the OCP.

The objective function is assembled from the stage cost \(\ell(t,x,u)\)
and optional terminal cost \(F(t,x)\) and has the form

\[J(t,x,u,N) = \sum_{k=0}^{N-1} \delta^k \ell(t_k,x(t_k),u(t_k)) + F(t_N,x(t_N)).\]

Where \(\delta \in (0,1]\) is a possible discount factor, see discount.

	Parameters

	
	t (array) – Times instant at which the stage costs and terminal cost are evaluated.

	x (array) – State trajectory at which the stage cost and terminal cost are
evaluated.

	u (array) – Control sequence at which the stage cost is evaluated.

	N (int) – Maximum index up to which the stage cost are summed.
During the MPC iteration this index is equivalent to
the MPC horizon.

	Returns

	J – Value of the objective function at the given input parameters.

	Return type

	array

LQP

Class method.

	
LQP(Q, R, N=None, P=None)

	Initialize a quadratic objective.

In this case the stage cost of the objective has the form

\[\ell(x,u) = x^T Q x + u^T R u + 2 x^T Q u\]

and the optional terminal cost is defined as

\[F(x,u) = x^T P x.\]

In this case the objective is always autonomous.

	Parameters

	
	Q (array) – Matrix defining the cost of the state of the form \(x^TQx\).

	R (array) – Matrix defining the cost of the control of the form \(u^TRu\).

	N (array, optional) – Possible Matrix defining the mixed cost term of the form \(2x^TNu\).
The default is None.

	P (array, optional) – Posible Matrix defining the terminal cost of the form \(x^TPx\).
The default is None.

	Returns

	QP – nMPyC-objective class object suitable to define a linear
quadratic optimal control problem.

	Return type

	objective

add_termianlcost

Class method.

	
add_termianlcost(self, terminalcost)

	Add terminal cost to the objective.

The terminal cost must be a callable function of the form \(F(t,x)\)
or \(F(x)\) in the autonomous case. If terminal cost already exists they
will be over written.

	Parameters

	terminalcost (callable) – A function defining the terminal cost of the optimal control
problem. Has to be of the form \(F(t,x)\) or \(F(x)\) in the autonomous
case.

endcosts

Class method.

	
endcosts(self, t, x)

	Evaluate termninal cost of the objective.

	Parameters

	
	t (float) – Time instant at which the terminal cost is evaluated.

	x (array) – Current state at which the terminal cost is evaluated.

	Returns

	Terminal cost evaluated at the given input values.

	Return type

	array

load

Class method.

	
load(path)

	Loads a nMPyC objective object from a file.

The specified path must lead to a file that was previously saved with
save().

	Parameters

	path (str) – String defining the path to the file containing the nMPyC
objective object.

For example

>>> objective.load('objective.pickle')

will load the objective previously saved with save().

save

Class method.

	
save(self, path)

	Saving the objective to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

The path can be absolut or relative and
the ending of the file is arbitrary.

	Parameters

	path (str) – String defining the path to the desired file.

For example

>>> objective.save('objective.pickle')

will create a file objective.pickle containing the nMPyC objective object.

stagecosts

Class method.

	
stagecosts(self, t, x, u)

	Evaluate stage cost of the objective.

	Parameters

	
	t (float) – Time instant at which the stage cost is evaluated.

	x (array) – Current state at which the stage cost is evaluated.

	u (array) – Current control at which the stage cost is evaluated.

	Returns

	Stage cost evaluated at the given input values.

	Return type

	array

constraints

	
class constraints

	Class used to define the constraints of the optimnal control problem.

Support for nonlinear, linear and box constraints are implemented
and provided.

To define the constraints, first, an empty object have to be created.
Then the individual constraints can be added with the help of the methods
add_bound() and add_constr().

Attributes

	constraints.linear_constr

	Collection of all linear constraints.

	constraints.lower_bndend

	Lower bound \(l_x \in \mathbb{R}^{nx}\) of the terminal state.

	constraints.lower_bndu

	Lower bound \(l_u \in \mathbb{R}^{nu}\) for the control.

	constraints.lower_bndx

	Lower bound \(l_x \in \mathbb{R}^{nx}\) of the state.

	constraints.nonlinear_constr

	Collection of all nonlinear constraints.

	constraints.type

	Indicating whether all constraints are linear.

	constraints.upper_bndend

	Upper bound \(u_x \in \mathbb{R}^{nx}\) of the terminal state.

	constraints.upper_bndu

	Upper bound \(u_u \in \mathbb{R}^{nu}\) of the control.

	constraints.upper_bndx

	Upper bound \(u_x \in \mathbb{R}^{nx}\) of the state.

Methods

	constraints.add_bound

	Add bounds as linear constraints to the OCP.

	constraints.add_constr

	Add linear or nonlinear constraints to the OCP.

	constraints.add_terminalconstr

	Add linear or nonlinear terminal constraints to the OCP.

	constraints.load

	Loads a nMPyC constraints object from a file.

	constraints.save

	Saving the constraints to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

linear_constr

Class property.

	
constraints.linear_constr

	Collection of all linear constraints.

This dictionary has the following form:

>>> linear_constr = {'eq': [..], 'ineq': [..],
>>> 'terminal_eq': [..], 'terminal_ineq': [..]}

The arrays that define the constraints are saved as lists which are contained in the dictionary.
For example

>>> linear_constr['eq'][0]

returns a list with the arrays \(H\), \(F\) and \(h\) defining the
first equality constraint

\[Hx + Fu = h.\]

	Type

	dict

lower_bndend

Class property.

	
constraints.lower_bndend

	Lower bound \(l_x \in \mathbb{R}^{nx}\) of the terminal state.

For the terminal state \(x(t_N)\) the inequality

\[x_i(t_N) \geq l_{x_i} \quad \text{for } i = 1,\ldots,nx\]

holds as a constraint.

	Type

	array

lower_bndu

Class property.

	
constraints.lower_bndu

	Lower bound \(l_u \in \mathbb{R}^{nu}\) for the control.

For all controls \(u(t_k)\) the inequalities

\[u_i(t_k) \geq l_{u_i} \quad \text{for } i = 1,\ldots,nu\]

hold as a constraint.

	Type

	array

lower_bndx

Class property.

	
constraints.lower_bndx

	Lower bound \(l_x \in \mathbb{R}^{nx}\) of the state.

For all states \(x(t_k)\) the inequalities

\[x_i(t_k) \geq l_{x_i} \quad \text{for } i = 1,\ldots,nx\]

hold as a constraint.

	Type

	array

nonlinear_constr

Class property.

	
constraints.nonlinear_constr

	Collection of all nonlinear constraints.

This dictionary has the following form:

>>> nonlinear_constr = {'eq': [..], 'ineq': [..],
>>> 'terminal_eq': [..], 'terminal_ineq': [..]}

In the lists contained in the dictionary the functions defining the
constraints are saved.
For example

>>> nonlinear_constr['eq'][0]

returns the function \(h(t,x,u)\) defining the
first equality constraint

\[h(t,x,u) = 0.\]

	Type

	dict

type

Class property.

	
constraints.type

	Indicating whether all constraints are linear.

If LQP, all constraints are linear.
Then all constraints are of the form

\[Ex + Fu \leq h\]

If at least one constraint is initialized as a nonlinear constraint
this attribute has the value NLP.

	Type

	str

upper_bndend

Class property.

	
constraints.upper_bndend

	Upper bound \(u_x \in \mathbb{R}^{nx}\) of the terminal state.

For the terminal state \(x(t_N)\) the inequalities

\[x_i(t_N) \leq u_{x_i} \quad \text{for } i = 1,\ldots,nx\]

hold as a constraint.

	Type

	array

upper_bndu

Class property.

	
constraints.upper_bndu

	Upper bound \(u_u \in \mathbb{R}^{nu}\) of the control.

For all controls \(u(t_k)\) the inequalities

\[u_i(t_k) \leq u_{u_i} \quad \text{for } i = 1,\ldots,nu\]

hold as a constraint.

	Type

	array

upper_bndx

Class property.

	
constraints.upper_bndx

	Upper bound \(u_x \in \mathbb{R}^{nx}\) of the state.

For all states \(x(t_k)\) the inequalities

\[x_i(t_k) \leq u_{x_i} \quad \text{for } i = 1,\ldots,nx\]

hold as a constraint.

	Type

	array

add_bound

Class method.

	
add_bound(self, bnd_type, variable, bound)

	Add bounds as linear constraints to the OCP.

Note while adding the bound it is not
checked if the bounds have the correct shape.
This will be verified later during the optimization
progress.

	Parameters

	
	bnd_type (str) – String defining whether the bound is a lower or upper bound.

	variable (str) – String defining on which variable the bound should be applied.
Possible values are state, control and terminal.

	bound (array) – Array containing the values of the bound.

For example

>>> constraints.add_bound('lower', 'state', lbx)

will add lbx as lower_bndx while

>>> constraints.add_bound('upper', 'terminal', ub_end)

will add ub_end as upper_bndend.

add_constr

Class method.

	
add_constr(self, cons_type, *args)

	Add linear or nonlinear constraints to the OCP.

Nonlinear inequality constraints are of the form

\[g(t,x,u) \geq 0 \quad \text{or} \quad g(x,u) \geq 0.\]

Nonlinear equality constraints are of the form

\[h(t,x,u) = 0 \quad \text{or} \quad h(x,u) = 0.\]

Linear inequality constraints are of the form

\[Ex + Fu \geq h.\]

Linear equality constraints are of the form

\[Ex + Fu = h.\]

For the form of terminal constrains see add_terminalconstr().

	Parameters

	
	cons_type (str) – String that defines the type of the constraints.
Possible values are eq, ineq, terminal_eq and terminal_ineq.

	*args (callable or arrays) – Function defining the (nonlinear) constraints or
arrays defining the linear constraints.
In the letter case the order of arguments are E, F, h and
if h is undefined this array is set to zero.

For example

>>> constraints.add_constr('ineq', E, F, h)

will add a linear inequality constraint to linear_constr while

>>> constraints.add_constr('terminal_eq',h_end)

will add a nonlinear equality terminal constraint to nonlinear_constr.

add_terminalconstr

Class method.

	
add_terminalconstr(self, cons_type, *args)

	Add linear or nonlinear terminal constraints to the OCP.

Nonlinear terminal inequality constraints are of the form

\[g(t,x) \geq 0 \quad \text{or} \quad g(x) \geq 0.\]

Nonlinear terminal equality constraints are of the form

\[h(t,x) = 0 \quad \text{or} \quad h(x) = 0.\]

Linear terminal inequality constraints are of the form

\[Ex \geq h.\]

Linear terminal equality constraints are of the form

\[Ex = h.\]

	Parameters

	
	cons_type (str) – String that defines the type of the terminal constraints.
Possible values are eq or ineq.

	*args (callable or arrays) – Function defining the (nonlinear) terminal constraints or
arrays defining the linear constraints.
In the letter case the order of arguments are E, h and
if h is undefined this array is set to zero.

For example

>>> constraints.add_terminalconstr('ineq', E, F, h)

will add a linear inequality terminal constraint to linear_constr while

>>> constraints.add_constr('eq',h)

will add a nonlinear equality terminal constraint to nonlinear_constr.

load

Class method.

	
load(path)

	Loads a nMPyC constraints object from a file.

The specified path must lead to a file that was previously saved with
save().

	Parameters

	path (str) – String defining the path to the file containing the nMPyC
constraints object.

For example

>>> constraints.load('constraints.pickle')

will load the constraints previously saved with save().

save

Class method.

	
save(self, path)

	Saving the constraints to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

The path can be absolut or relative and
the ending of the file is arbitrary.

	Parameters

	path (str) – String defining the path to the desired file.

For example

>>> constraints.save('constraints.pickle')

will create a file constraints.pickle containing the nMPyC constraints object.

model

	
class model(objective, system, constraints=None)

	Class that contains all the components of the optimal control problem.

Can be used to perform open and closed loop simulations.

	Parameters

	
	objective (objective) – nMPyC-objective defining the objective of the
optimal control problem.

	system (system) – nMPyC-system defining the system dynamics of the
optimal control problem.

	constraints (constraints optional) – nMPyC-constraints defining the constraints of the optimal control
problem. If constraints is None the problem is unconstrained.
The default is None.

Attributes

	model.N

	Prediction horizon of the MPC loop.

	model.constraints

	Constraints of the optimal control problem.

	model.objective

	Objective of the optimal control problem.

	model.opti

	Optimizer for the optimal control problem.

	model.system

	System dynamics of the optimal control problem.

Methods

	model.load

	Loads a nMPyC model object from a file.

	model.mpc

	Solves the optimal control problem via model predictive control.

	model.save

	Saving the model to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

	model.solve_ocp

	Solves the finit horizon optimal control problem.

N

Class property.

	
model.N

	Prediction horizon of the MPC loop.

	Type

	int

constraints

Class property.

	
model.constraints

	Constraints of the optimal control problem.

	Type

	constraints

objective

Class property.

	
model.objective

	Objective of the optimal control problem.

	Type

	objective

opti

Class property.

	
model.opti

	Optimizer for the optimal control problem.

This property can be used to set different optimization
options.
A distinction is made between basic settings of the
optimizer and solver-specific settings.

The basic settings can be adjusted by calling

>>> model.opti.set_options({..})

The dictionary that is passed can contain the following entries

	Parameter

	Description

	Default value

	solver

	String defining which solver is for

optimization. Currently supported solvers are

	ipotpt

	sqpmethod

	ospq

	SLSQP

	trust-constr

For auto a suitable solver depending on other

options and parameters is selected.

	auto

	full_discretization

	If True, the method of full discretiziation is

used for optimization. Otherwise the the system

dynamics is resolved in the objective function.

	True

	tol

	The toleranz of the solver.

If the solver distinguishes between relative

and absolute tolerances, both are set to this

value.

	1e-06

	maxiter

	Maximal number of iterations during the

optimization progress.

	5000

	verbose

	If True, the verbose option of the selected

solver ist activated.

	False

	initial_guess

	Initial guess for the optimization variable u.

Must be an array of shape (nx,N).

If the initial guess has not the right shape or

is None it will be set to nmpyc.ones((nu,N))*0.1

by default.

	None

The auto option of the solver selection follows the rule

	If the optimal control problem is recognized as a LQP and a fixed step discretization of the system is given, osqp is selected.

	If a condition of 1. is violated and not a SciPy discretization method is choosen, ipopt is selected.

	Otherwise SLSQP is selected.

The solver-specific settings can be custamized by calling

>>> model.opt.set_solverOptions({..})

Valid parameters which the passed dictionary can contain
are depending on the selected solver.
For a list of these settings take a look at

	Sourceforge [http://casadi.sourceforge.net/v2.0.0/api/html/d6/d07/classcasadi_1_1NlpSolver.html] for the CasADi solvers

	SciPy Documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html] for the SciPy solvers

	OSQP Website [https://osqp.org/docs/interfaces/solver_settings.html] for the osqp solver

	Type

	opti

system

Class property.

	
model.system

	System dynamics of the optimal control problem.

	Type

	system

load

Class method.

	
load(path)

	Loads a nMPyC model object from a file.

The specified path must lead to a file that was previously saved with
save().

	Parameters

	path (str) – String defining the path to the file containing the nMPyC
model object.

For example

>>> model.load('model.pickle')

will load the model previously saved with save().

mpc

Class method.

	
mpc(self, x0, N, K, discount=None)

	Solves the optimal control problem via model predictive control.

	Parameters

	
	x0 (array) – Initial state of the optimal control problem.

	N (int) – MPC horizon.

	K (int) – Number of MPC itertaions.

	discount (float, optional) – Discountfactor of the objective. The default is None.

	Returns

	res – nMPyC result object containing the optimiaztion results of
the closed and open loop simulations.

	Return type

	result

save

Class method.

	
save(self, path)

	Saving the model to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

The path can be absolut or relative and
the ending of the file is arbitrary.

	Parameters

	path (str) – String defining the path to the desired file.

For example

>>> model.save('objective.pickle')

will create a file model.pickle containing the nMPyC model object.

solve_ocp

Class method.

	
solve_ocp(self, x0, N, discount=None)

	Solves the finit horizon optimal control problem.

	Parameters

	
	x0 (array) – Initial value of the optimal control problem.

	N (int) – Prediction horizon of the control problem.

	discount (float, optional) – Discountfactor of the objective. The default is None.

	Returns

	
	u_ol (array) – Optimal control sequence.

	x_ol (array) – Optimal trajectory corresponding to the optimal control sequence.

result

	
class result(x0, t0, h, N, K)

	Class used to store the simulation results of the MPC simulation.

To obtain the individual components of the simulation,
such as closed loop and open loop results,
the individual attributes need to be called.

Also the result object contains information about errors and
other solver statistics, which can be used for further investigation
of the simulation progress.

Additionally, this class provides a way to visualize the results
in a suitable way with the plot() method.

	Parameters

	
	x0 (array) – Initial state.

	t0 (float) – Initial time.

	h (float) – Sampling rate.

	N (int) – MPC horizon.

	K (int) – Number of MPC Interations.

Attributes

	result.N

	MPC horizon

	result.ellapsed_time

	Total ellapsed time for the closed loop simulation.

	result.ellapsed_time_per_itertaion

	List containing the ellapsed time of every single itertaion of the closed loop simulation.

	result.error

	Error message with which the solver failed.

	result.l_cl

	Stage costs evaluated at the closed loop trajectory and feedback.

	result.l_ol

	List containing the stage costs evaluated at the open loop trajectories and controls of all MPC itertaions.

	result.sampling_rate

	Sampling rate.

	result.solver

	Name of the choosen optimization method.

	result.succes

	True if the solver converged sucessfully in all MPC itertaions, false if the MPC loop abort prematurely.

	result.sucessfull_itertaions

	Number of succesfull MPC iterations.

	result.t0

	Initial time

	result.t_cl

	Time sequence at which the closed loop states and controls are evaluated.

	result.t_ol

	List containing the time sequences at which the closed loop states and controls are evaluated in the open loop simulations.

	result.u_cl

	Closed loop feedback.

	result.u_ol

	List containing the open loop optimal control values of all MPC itertaions.

	result.x0

	Initial state.

	result.x_cl

	Closed loop trajectory.

	result.x_ol

	List containing the open loop trajectories of all MPC itertaions.

Methods

	result.load

	Loads a nMPyC result object from a file.

	result.plot

	Plot the results of the MPC simulation.

	result.save

	Saving the result to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

	result.show_errors

	Shows the errors that occurred during the simualtion.

N

Class property.

	
result.N

	MPC horizon

	Type

	int

ellapsed_time

Class property.

	
result.ellapsed_time

	Total ellapsed time for the closed loop simulation.

	Type

	float

ellapsed_time_per_itertaion

Class property.

	
result.ellapsed_time_per_itertaion

	List containing the ellapsed time of
every single itertaion of the closed loop simulation.

	Type

	list of float

error

Class property.

	
result.error

	Error message with which the solver failed.
If success is True error is None.

	Type

	str

l_cl

Class property.

	
result.l_cl

	Stage costs evaluated at the
closed loop trajectory and feedback.

	Type

	numpy.ndarray

l_ol

Class property.

	
result.l_ol

	List containing the stage costs evaluated
at the open loop trajectories and controls of all MPC itertaions.

	Type

	list of numpy.ndarrays

sampling_rate

Class property.

	
result.sampling_rate

	Sampling rate.

	Type

	float

solver

Class property.

	
result.solver

	Name of the choosen optimization method.

	Type

	str

succes

Class property.

	
result.succes

	True if the solver converged sucessfully in all MPC itertaions,
false if the MPC loop abort prematurely.

	Type

	bool

sucessfull_itertaions

Class property.

	
result.sucessfull_itertaions

	Number of succesfull MPC iterations.

	Type

	int

t0

Class property.

	
result.t0

	Initial time

	Type

	float

t_cl

Class property.

	
result.t_cl

	Time sequence at which the
closed loop states and controls are evaluated.

	Type

	numpy.ndarray

t_ol

Class property.

	
result.t_ol

	List containing the time sequences
at which the closed loop states and controls are evaluated in
the open loop simulations.

	Type

	list of numpy.ndarrays

u_cl

Class property.

	
result.u_cl

	Closed loop feedback.

	Type

	numpy.ndarray

u_ol

Class property.

	
result.u_ol

	List containing the
open loop optimal control values of all MPC itertaions.

	Type

	list of numpy.ndarrays

x0

Class property.

	
result.x0

	Initial state.

	Type

	numpy.ndarray

x_cl

Class property.

	
result.x_cl

	Closed loop trajectory.

	Type

	numpy.ndarray

x_ol

Class property.

	
result.x_ol

	List containing the
open loop trajectories of all MPC itertaions.

	Type

	list of numpy.ndarrays

load

Class method.

	
load(path)

	Loads a nMPyC result object from a file.

The specified path must lead to a file that was previously saved with
save().

	Parameters

	path (str) – String defining the path to the file containing the nMPyC
result object.

For example

>>> result.load('result.pickle')

will load the result previously saved with save().

plot

Class method.

	
plot(self, *args, **kwargs)

	Plot the results of the MPC simulation.

If no argument is passed, by default the closed loop states and controls are
plotted seperated in two subplots.

If only a specific component of the solution should be plotted,
this can be customized by using a string as the first argument.
Valid arguments for this are

	state for only plotting the closed loop state trajectories

	control for only plotting the closed loop control values

	cost for plotting the stage costs evaluated at the closed loop results

	phase for plotting a phase portrait of two components of the solution.

Further adjustments can be made with the help of the following keyword arguments.

	Argument

	Description

	Default value

	xk

	List specifying which components of the state

are plotted.

	[1,…,nx]

	uk

	List specifying which components of the control

are plotted.

	[1,…,nu]

	show_ol

	If True, the open loop simulation rersults are

also plotted additionaly to the closed loop

results.

	True

	iters

	List indicating from which iteration on the open

loop results should be plotted.

Will be ignored if show_ol is False.

	[1,…,K+1]

	usetex

	If True, the captions are displayed in TEX style.

	True

	grid

	If True, a grid is displayed in the background

of the plot.

	True

	show_legend

	If True, a legend will be displayed inside

the plot.

	True

	phase1

	Phase 1 of the phase portrait plot.

Has the form x_k or u_k, where k determines

the respective component.

Will be ignored if args!=’phase’.

	None

	phase2

	Phase 2 of the phase portrait plot.

Has the form x_k or u_k, where k determines

the respective component.

Will be ignored if args!=’phase’.

	None

	dpi

	resolution of the figure, see

	100

	figsize

	The size of the figure.

Has the form [width, height] in inches.

	[8., 6.]

	linewidth

	Set the line width in points.

	
	

	fontsize

	The font size of the annotations.

If the value is numeric the size will be the

absolute font size in points.

	
	

save

Class method.

	
save(self, path)

	Saving the result to a given file with dill [https://dill.readthedocs.io/en/latest/dill.html].

The path can be absolut or relative and
the ending of the file is arbitrary.

	Parameters

	path (str) – String defining the path to the desired file.

For example

>>> result.save('result.pickle')

will create a file result.pickle containing the nMPyC result object.

show_errors

Class method.

	
show_errors(self)

	Shows the errors that occurred during the simualtion.

For example, if the solver ipopt was selected and the
defined optimal control problem is infeasible, this method
will print out the message

An error occured during itertaion 1 of 100:

Error in Opti::solve [OptiNode] at …/casadi/core/optistack.cpp:159:

…/casadi/core/optistack_internal.cpp:999: Assertion “return_success(accept_limit)” failed:

Solver failed. You may use opti.debug.value to investigate the latest values of variables. return_status is ‘Infeasible_Problem_Detected’

For more informations about the error messages take a look
at the documentation of the respective solver.

If the simulation was completly succesfull, the message

No error occured during the MPC-Loop

will be printed out.

nmpyc_array

Module for array definition and computation.

This module provides an array class and associated functions for
corresponding matrix calculations.

The goal of this class and the individual functions is to enable
compatibility of calculations with both casadi and numpy objects
without changing the syntax of the program.
This enables the user to program as easily as possible and at
the same time to switch between symbolic and numeric calculation.

Classes

	array

	Class used to save arrays with symbolic or numeric values.

Functions

	abs

	Calculates the absolute value of a number or array.

	arccos

	Calculates the arcuscosinus of a given number or array

	arccosh

	Calculates the arcuscosinus hypernolicus of a given number or array

	arcsin

	Calculates the arcussinus of a given number or array

	arcsinh

	Calculates the arcussinus hyperbolicus of a given number or array

	arctan

	Calculates the arcustangens of a given number or array

	arctanh

	Calculates the arcustangens hyperbolicus of a given number or array

	concatenate

	Join a sequence of arrays along an existing axis.

	convert

	Convert a numpy-, casadi- or nMPyC-array to another of these intances.

	cos

	Calculates the cosinus of a given number or array

	cosh

	Calculates the cosinus hyperbolicus of a given number or array

	diag

	Creates an diagonal matrix from a given vector.

	exp

	Calculates the exponential of a given number or array

	eye

	Creates an array defining the idendity.

	log

	Calculates the natural logarithm of a given number or array

	matrix_power

	Raises a square matrix to the n-th power.

	max

	Return the maximal value of the arguments

	min

	Returns the minimal value of the arguments

	norm

	Returns the norm of a vector or matrix.

	ones

	Creates an array with only entries equal to one.

	power

	Calculates the (elementwise) n-th power of a number or array.

	reshape

	Reshape an array to a new size.

	sin

	Calculates the sinus of a given number or array

	sinh

	Calculates the sinus hyperbolicus of a given number or array

	sqrt

	Calculates the square root of a given number or array

	tan

	Calculates the tangens of a given number or array

	tanh

	Calculates the tangens hyperblicus of a given number or array

	zeros

	Creates an array with only zero entries.

Attributes

	inf

	Constant to define infinity.

	pi

	Constant to define the number pi.

array

	
class array(dim=0)

	Class used to save arrays with symbolic or numeric values.

The symbolic entries are provided by CasADi and will be
transformed automatically to numeric values of numpy type
if it is posiible.

	Parameters

	dim (int, tuple, cas.MX, cas.SX, cas.DM, list or numpy.ndarray, optional) – Dimension of which an empty array is created or object from which
the entries and dimension are copied. The default is 0.

Attributes

	array.A

	Array containing all entries.

	array.T

	Transposed array.

	array.dim

	Dimension of the array.

	array.symbolic

	True if array has symbolic entries, False otherwise.

Methods

	array.fill

	Fill all entries with one value.

	array.flatten

	Flat array to one dimension.

	array.transpose

	Transpose array.

A

Class property.

	
array.A

	Array containing all entries.

	Type

	casadi.MX or numpy.array

T

Class property.

	
array.T

	Transposed array.

	Type

	array

dim

Class property.

	
array.dim

	Dimension of the array.

	Type

	tuple

symbolic

Class property.

	
array.symbolic

	True if array has symbolic entries, False otherwise.

	Type

	bool

fill

Class method.

	
fill(self, a)

	Fill all entries with one value.

	Parameters

	a (int or float) – Value that all entries should take.

flatten

Class method.

	
flatten(self)

	Flat array to one dimension.

	Returns

	y – Flatten array with dimension (1,n).

	Return type

	array

transpose

Class method.

	
transpose(self)

	Transpose array.

	Returns

	y – Transposed array.

	Return type

	array

abs

	
abs(x)

	Calculates the absolute value of a number or array.

arccos

	
arccos(x)

	Calculates the arcuscosinus of a given number or array

arccosh

	
arccosh(x)

	Calculates the arcuscosinus hypernolicus of a given number or array

arcsin

	
arcsin(x)

	Calculates the arcussinus of a given number or array

arcsinh

	
arcsinh(x)

	Calculates the arcussinus hyperbolicus of a given number or array

arctan

	
arctan(x)

	Calculates the arcustangens of a given number or array

arctanh

	
arctanh(x)

	Calculates the arcustangens hyperbolicus of a given number or array

concatenate

	
concatenate(arrays, axis=0)

	Join a sequence of arrays along an existing axis.

	Parameters

	
	arrays (tuple of casadi.MX, casadi.SX, casadi.DM or numpy.ndarrays) – Sequence of arrays which will be concatenated.
The arrays must have the same shape, except in the dimension
corresponding to axis.

	axis (int, optional) – The axis along which the arrays will be joined. The default is 0.

	Returns

	The concatenated array.

	Return type

	array

convert

	
convert(a, dtype='auto')

	Convert a numpy-, casadi- or nMPyC-array to another of these intances.

	Parameters

	
	a (array, cas.MX, cas.SX, cas.DM or numpy.ndarray) – Array which should be converted.

	dtype (str, optional) – Name of the class to which the array will be converted.
The default is ‘auto’.

	Returns

	The converted object.

	Return type

	numpy.ndarray, cas.MX, cas.SX, cas.DM

cos

	
cos(x)

	Calculates the cosinus of a given number or array

cosh

	
cosh(x)

	Calculates the cosinus hyperbolicus of a given number or array

diag

	
diag(x)

	Creates an diagonal matrix from a given vector.

	Parameters

	x (array, numpy.ndarray, cas.MX, cas.SX or cas.DX, list) – Vector containing the diagonal entries of the matrix.

	Returns

	Diagonal matrix with the desired diagonal elements.

	Return type

	array

exp

	
exp(x)

	Calculates the exponential of a given number or array

eye

	
eye(dim)

	Creates an array defining the idendity.

	Parameters

	dim (int) – Dimnension of the idendity matrix.

	Raises

	
	ValueError – If the given dimension is not supported.

	TypeError – If an input parameter has not the right type.

	Returns

	y – Idendity matrix as an instance of array.

	Return type

	array

log

	
log(x)

	Calculates the natural logarithm of a given number or array

matrix_power

	
matrix_power(x, n)

	Raises a square matrix to the n-th power.

	Parameters

	
	x (int, float, numpy.ndarray, cas.MS, cas.SX or cas.DM) – Number or array of which the n-th power should be computed.

	n (int or float) – Number defining the exponent.

max

	
max(*args)

	Return the maximal value of the arguments

min

	
min(*args)

	Returns the minimal value of the arguments

norm

	
norm(x, order=None)

	Returns the norm of a vector or matrix.

	Parameters

	
	x (array, numpy.ndarray, cas.MX, cas.SX or cas.DM) – Vector or matrix of which the norm should be calculated.

	order (number or str, optional) – String defining the type of the norm.
Posiible values are 1, 2, ‘fro’ or ‘inf’.
The default is None.

ones

	
ones(dim)

	Creates an array with only entries equal to one.

	Parameters

	dim (int or tuple) – Dimension of the array.

	Raises

	
	ValueError – If the given dimension is not supported.

	TypeError – If the given dimension has not the right type.

	Returns

	y – An array of the given dimension with only entries equal to one.

	Return type

	array

power

	
power(x, n)

	Calculates the (elementwise) n-th power of a number or array.

	Parameters

	
	x (int, float, numpy.ndarray, cas.MS, cas.SX or cas.DM) – Number or array of which the n-th power should be computed.

	n (int or float) – Number defining the exponent.

reshape

	
reshape(a, new_size)

	Reshape an array to a new size.

	Parameters

	
	a (array) – .

	new_size (tuple) – New shape.

	Returns

	An array instance with the new shape.

	Return type

	array

sin

	
sin(x)

	Calculates the sinus of a given number or array

sinh

	
sinh(x)

	Calculates the sinus hyperbolicus of a given number or array

sqrt

	
sqrt(x)

	Calculates the square root of a given number or array

tan

	
tan(x)

	Calculates the tangens of a given number or array

tanh

	
tanh(x)

	Calculates the tangens hyperblicus of a given number or array

zeros

	
zeros(dim)

	Creates an array with only zero entries.

	Parameters

	dim (int or tuple) – Dimension of the array.

	Raises

	
	ValueError – If the given dimension is not supported.

	TypeError – If the given dimension has not the right type.

	Returns

	y – An array of the given dimension with only zero entries.

	Return type

	array

inf

	
inf = inf

	Constant to define infinity.

	Type

	float

pi

	
pi = 3.141592653589793

	Constant to define the number pi.

	Type

	float

Examples

In addition to the information from the API References, the following examples are intended to provide guidance for implementing your own problems.

To show the different possibilities of the nMPyC package, we illustrate them with different examples.

Therefore, the chemical reactor is a nonlinear autonomous problem, the inverted pendulum is a linear quadratic problem, the heat pump is a nonlinear time-varying problem and the 2d investment problem is a discounted problem.

	Chemical Reactor

	Inverted Pendulum

	Heat Pump

	2d Investment Problem

Chemical Reactor

We consider a single first-order, irreversible chemical reaction in an isothermal CSTR

\[A \to B.\]

The material balances and the system data are provided in [DAR11] and is given by the nonlinear model

\begin{equation*}
 \begin{split}
 c_{A}(k+1)&=c_{A}(k)+h\left(\frac{Q(k)}{V}(c_f^{A}-c_{A}(k))-k_r{c_{A}(k)}\right)\\
 c_{B}(k+1)&=c_{B}(k)+h\left(\frac{Q(k)}{V}(c_f^{B}-c_{B}(k))+k_r{c_{B}(k)}\right),
 \end{split}
\end{equation*}
in which \(c_A\geq 0\) and \(c_B\geq 0\) are the molar concentrations of \(A\) and \(B\) respectively, and \(Q\leq 20\) (L/min) is
the flow through the reactor. The constants and their meanings are given in table below.

	Reactor constants

	

	

	value

	unit

	feed concentration of \(A\)

	\(c_f^{A}\)

	1

	mol/L

	feed concentration of \(B\)

	\(c_f^{B}\)

	0

	mol/L

	volume of the reactor

	\(V_R\)

	10

	L

	rate constant

	\(k_r\)

	1.2

	L/(mol min)

	equilibrium

	\((c_e^{A},c_e^B,Q_e)\)

	\((\frac 1 2, \frac 1 2, 12)\)

	

	initial value

	\((c_0^{A},c_0^B)\)

	\((0.4, 0.2)\)

	

To initialize the system dynamics a function that implements \(f(x,u)\), where \(x = (c_{A},c_{B})^T\) and \(u=Q\) has to be defined.

V = 10.
cf_A = 1.
cf_B = 0.
k_r = 1.2

def f(x,u):
 y = nmpyc.array(2)
 y[0] = x[0] + 0.5*((u[0]/V) *(cf_A - x[0]) - k_r*x[0])
 y[1] = x[1] + 0.5*((u[0]/V) *(cf_B - x[1]) + k_r*x[1])
 return y

After that, the nMPyC system object can be set by calling

system = nmpyc.system(f, 2, 1, system_type='discrete')

In the next step, the objective is defined by using the stage cost given by

\begin{align*}
 \ell (c_{A}(k),c_{B}(k),Q(k))&=\frac 1 2\vert c_A(k)-\frac 1 2\vert^2+\frac 1 2 \vert c_B(k)-\frac 1 2\vert^2+\frac 1 2 \vert Q(k) -12 \vert^2\\
\end{align*}
Since we do not need terminal cost, we can initialize the objective directly using the following implementation.

def l(x,u):
 return 0.5 * (x[0]-0.5)**2 + 0.5 * (x[1]-0.5)**2 + 0.5 * (u[0]-12)**2

objective = nmpyc.objective(l)

In terms of the constraints we assume that

\[\begin{split}0 &\leq x_1(k) & < \infty & \quad & \text{for } k=0,\ldots,N \\
0 &\leq x_2(k) & < \infty & \quad & \text{for } k=0,\ldots,N \\
0 &\leq u(k) & \leq 20 & \quad & \text{for } k=0,\ldots,N-1.\end{split}\]

This can be realized in the code as follows:

constraints = nmpyc.constraints()
lbx = nmpyc.zeros(2)
ubu = nmpyc.ones(1)*20
lbu = nmpyc.zeros(1)
constraints.add_bound('lower','state', lbx)
constraints.add_bound('lower','control', lbu)
constraints.add_bound('upper','control', ubu)

Moreover, we consider the equilibrium \((c_e^{A},c_e^B,Q_e)\) as th terminal condition for our optimal control problem, which is implemented as

xeq = nmpyc.array([0.5,0.5])
def he(x):
 return x - xeq
constraints.add_constr('terminal_eq', he)

After all components of the optimal control problem have been implemented, we can now combine them into a model and start the MPC loop.
For this Purpose, we define

\[x(0) = (0.4,0.2)^T\]

and set \(N=15\), \(K=100\).

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([0.4,0.2])
res = model.mpc(x0,15,100)

Following the simulation we can visualize the results by calling

res.plot()

which generates the plot bellow.

[image: ../_images/reactor.png]

Inverted Pendulum

We consider the mechanical model of an inverted rigid pendulum mounted on a carriage, see [Grune21], [GruneP17].

By means of physical laws an “exact” differential equation model can be derived.
However, since in our case we like to obtain a linear quadratic problem,
we linearize the differential equation at the origin.
Thus, we obtain the system dynamics defined by

\[\begin{split}\dot{x}(t) = \left(\begin{array}{cccc}
 0 & 1 & 0 & 0 \\
 g & -k & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0
\end{array}\right) x(t) + \left(\begin{array}{c}
 0 \\
 1 \\
 0 \\
 1
\end{array}\right) u(t).\end{split}\]

Here, the state vector \(x \in \mathbb{R}^4\) consists of 4 components. \(x_1\) corresponds to the angle \(\psi\) of the pendulum, which increases counterclockwise, where \(x_1 = 0\) corresponds to the upright pendulum. \(x_2\) is the angular velocity, \(x_3\) the position of the carriage and \(x_4\) its velocity.
The control \(u\) is the acceleration of the carriage.
The constant \(k=0.1\) describes the friction of the pendulum and the constant \(g \approx 9.81 m/s^2\) is the acceleration due to gravity.

Since the system dynamics are linear, we can initialize them using the LQP method.

g = 9.81
k = 0.1
A = nmpyc.array([[0, 1, 0, 0],
 [g, -k, 0, 0],
 [0, 0, 0, 1],
 [0, 0, 0, 0]])
B = nmpyc.array([0, 1, 0, 1])
system = nmpyc.system.LQP(A, B, 4, 1, 'continuous',
 sampling_rate=0.1, method='rk4')

Note that we have to use one of the fixed step methods as euler, heun or rk4 as integration method if we like to exploit the linear quadratic structure of the problem in the optimization.

In the next step, we have to define the objective of the optimal control problem.
In doing so, we assume the stage cost

\[\ell(x,u) = 2x^Tx + 4u^Tu.\]

Since we assume no terminal cost, we can implement the objective as shown in the following code snippet.

Q = 2*nmpyc.eye(4)
R = 4*nmpyc.eye(1)
objective = nmpyc.objective.LQP(Q, R)

Again, we use the LQP method to exploit the linear quadratic structure of the problem later.

In terms of the constraints we assume the state constraints

\[-9 \leq x_i(t) \leq 5\]

for \(i=1,\ldots,4\) and the control constraint

\[-20 \leq u(t) \leq 6 \quad\]

This can be realized in the code as

constraints = nmpyc.constraints()
lbx = nmpyc.zeros(4)*(-9)
ubx = nmpyc.ones(4)*5
constraints.add_bound('lower','state', lbx)
constraints.add_bound('upper','state', ubx)
constraints.add_bound('lower', 'control', nmpyc.array([-20]))
constraints.add_bound('upper', 'control', nmpyc.array([6]))

After all components of the optimal control problem have been implemented, we can now combine them into a model and start the MPC loop.
For this Purpose, we define the inital value

\[x(0) = (1,1,1,1)^T\]

and set \(N=20\), \(K=100\).

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([1, 1, 1, 1])
res = model.mpc(x0,20,100)

Since the problem is linear-quadratic, the program automatically takes advantage of this fact and uses the appropriate solver osqp.
To change this and use for example the SciPy solver SLSQP, we can use the set_options method before calling model.mpc().

model.opti.set_options(dict(solver='SLSQP'))

Note that changing the optimizer usually does not have any advantage and is therefore not necessarily recommended.
At this point we only like to demomnstrate the use of this function.

Following the simulation we can visualize the open and closed loop results by calling

res.plot() # plot closed loop results
res.plot('state', show_ol=True) # plot open loop states

which generates the plots bellow.

[image: ../_images/invpend_cl.png]
[image: ../_images/invpend_ol.png]

Heat Pump

This example describes a home heating system that involves the optimal control of a small heat pump coupled to a floor heating system. The corresponding dynamic model is introduced in [LHDI10] and is given by

\begin{align}
 \dot{x_1} &= \dfrac{-k_{WR}}{\rho_W c_W V_H}x_1 + \dfrac{k_{WR}}{\rho_W c_W V_H}x_2 + \dfrac{1}{\rho_W c_W V_H}u\\
 \dot{x_2}&= \dfrac{k_{WR}}{k_G \tau_G}x_1 -\dfrac{k_{WR}+k_G}{k_G\tau_G}x_2 +\dfrac{1}{\tau_G} T_{\text{amb}},
\end{align}
where \(x_1\) denotes the temperature of the water returning from the heating, \(x_2\) denotes the room temperature and \(u\) is the heat supplied from the heat pump to the floor. Further, the ambient temperature

\[T_\text{amb}(t) = 2.5 + 7.5 \sin\left(\frac{2\pi t}{t_f}-\frac \pi 2\right)\]

describes a sinusoidal disturbance from the outside temperature where \(t_f = 24\). The remaining constants are summarized in the table below.

	Reactor constants

	

	
	value

	unit

	density of the water

	\(\rho_W\)

	997

	\(kg/m^3\)

	specific heat capacity of water

	\(c_W\)

	4.1851

	\(J/kgK\)

	volume of the water

	\(V_H\)

	7.4

	\(m^3\)

	thermal conductivity between water and the room

	\(k_{WR}\)

	510

	\(W/K\)

	thermal conductivity between the room and the environment

	\(k_G\)

	125

	\(W/K\)

	thermal time constant of the room

	\(\tau_G\)

	260

	\(s\)

First, we have to implement the outside temperature in the code to define our system dynamics.

t_f = 24
def T_amb(t):
 return 2.5 + 7.5*nmpyc.sin((2*nmpyc.pi*t)/t_f - (nmpyc.pi/2))

After that, we can define the right hand side of the system by

rho_W = 997
c_W = 4.1851
V_H = 7.4
k_WR = 510
k_G = 125
thau_G = 260
def f(t,x,u):
 y = nmpyc.array(2)
 y[0] = (-k_WR/(rho_W*c_W*V_H)*x[0]
 + k_WR/(rho_W*c_W*V_H)*x[1]
 + 1/(rho_W*c_W*V_H)*u[0])
 y[1] = (k_WR/(k_G*thau_G)*x[0]
 - (k_WR + k_G)/(k_G*thau_G)*x[1]
 + (1/thau_G)*T_amb(t))
 return y

And finally initialize the system by

system = nmpyc.system(f, 2, 1, 'continuous', sampling_rate=0.5, method='euler')

In the heating system the conflict between energy and thermal comfort arises. Thus, the stage cost reads

\begin{align*}
 \ell(x,u)&=\frac u P_{\max} + (x_2-T_\text{ref})^2,
\end{align*}
where \(P_{\max} = 15000 (W)\) is the maximal power of the heating pump and \(T_\text{ref} = 22^{\circ} C\) is the desired temperature of the room. The reference temperature \(T_\text{ref}\) can be selected differently – depending on the individual thermal comfort.

According to this we can initialize our objective by

P_max = 15000
T_ref = 22
def l(x,u):
 return (u[0]/P_max) + (x[1]-T_ref)**2

and implement the control constraint

\[0 \leq u(t) \leq P_{max}\]

as

constraints = nmpyc.constraints()
constraints.add_bound('lower', 'control', nmpyc.array([0]))
constraints.add_bound('upper', 'control', nmpyc.array([P_max]))

After all components of the optimal control problem have been implemented, we can now combine them into a model and start the MPC loop. For this purpose, we define

\[x(0) = (22, 19.5)^T\]

and set \(N=30\) and \(K=500\).

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([22., 19.5])
res = model.nmpyc(x0,N,K)

Following the simulation we can visualize the results by calling

res.plot()

which generates the plot bellow.

[image: ../_images/heatpump.png]

2d Investment Problem

To examplify a discounted problem we consider a 2d variant of an investment problem, originally introduced in [HKHF03] and furhter explored in [GruneSS15].

The system dynamics for this problem are given by

\[\begin{split}\dot{x}_1(t) &= x_2(t) - \sigma x_1(t) \\
\dot{x}_2(t) &= u(t)\end{split}\]

where we set \(\sigma = 0.25\) for our calculations.

To implement the dynamics we have to initialize a function that implements the right hand side of the dynamics.

sigma = 0.25
def f(x,u):
 y = nmpyc.array(2)
 y[0] = x[1]-sigma *x[0]
 y[1] = u
 return y

After that, the nMPyC system object can be set by calling

system = nmpyc.system(f, 2, 1, 'continuous', sampling_rate=0.2, method='heun')

To model the payoff of the investment problem we assume th stage cost

\[\ell(x,u) = -(R(x_1) - c(x_2) - v(u))\]

where \(R(x_1) = k_1 \sqrt{x_1} - x_1/(1+k_2 x_1^4)\) is a revenue function of the firm with a
convex segment due to increasing returns. \(c(x_2) = c_1 x_2 + c_2 x_2^2/2\) denotes adjustment costs
of investment and \(v(u) = \alpha u^2/2\) represents adjustment costs of the change of investment.
The convex segment in the payoff function just mentioned is likely to generate two domains
of attraction.
Additionally we choose \(k_1=2\), \(k_2=0.0117\), \(c_1=0.75\), \(c_2=2.5\) and \(\alpha=12\) for our computations.

With the nMPyC package the implemnetiation of the objective corresponding to this costs can be done as follws.

def l(x,u):
 R = k1*x[0]**(1/2)-x[0]/(1+k2*x[0]**4)
 c = c1*x[1]+(c2*x[1]**2)/2
 v = (alpha*u[0]**2)/2
 return -(R - c - v)

objective = nmpyc.objective(l)

Since this problem is unconstrained we can now initialize our model by

model = nmpyc.model(objective,system)

For our simulation we assume set the discount factor to

\[\beta = e^{-\delta h}\]

where \(h=0.2\) is our samplimng rate and \(\delta=0.04\) is the continuous discount rate.

It can now be shown that this problem has two domains of attraction, one at roughly \(x^* = (0.5, 0.2)\) and the other roughly at \(x^* = (4.2, 1.1)\).
Now we choose ifferent initial values from both domains of attraction to test, if we can replicate the two domains of attraction for a finite decision horizon by using nonlinear model predictive control.
For this purpose we set the MPC horizon \(N=50\) and the number of MPC iterations to \(K=500\).

This leads to the following code for running the closed loop simulation for the discounted problem.

discount = nmpyc.exp(-0.04*0.2)
N = 50
K = 500

x0 = nmpyc.array([3.0,0.75])
res1 = nmpyc.mpc(x0,N,K,discount)

x0 = nmpyc.array([5.0,1.75])
res2 = nmpyc.mpc(x0,N,K,discount)

Looking at the phase portraits of the two simulations, we can confirm that we really converge against the two different equilibria with the closed loop trajectory.
The phase portraits of our simulations can be plotted with the nMPyC package by calling

res1.plot('phase', phase1='x_1', phase2='x_2', show_ol=True)
res2.plot('phase', phase1='x_1', phase2='x_2', show_ol=True)

The option show_ol=True will also plot the pahase portraits of the open loop simulations of each iteration, which leads the output below.

[image: ../_images/haunschmied_x01.png]
[image: ../_images/haunschmied_x02.png]

Templates

In addition to the examples, we also provide templates to facilitate the implementation.

To take advantage of the different structures of the problems, we have implemented templates for the following problem types.

	Time-variant Problem

	Autonomous Problem

	Linear Quadratic Problem

Note

Any problem, whether nonlinear, linear, autonomous, or time-varying, can be initialized as a
nonlinear time-varying optimal control problem.
Therefore, you can always fall back on such an implementation.
However, if you know the structure of your problem and this is to be exploited by the program
in order to possibly speed up the simulation, it is necessary to initialize the problem as such.

Time-variant Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: continuous or discrete
sampling_rate = 1. # sampling rate h (optional)
t0 = 0. # initial time (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value
discount = 1. # dicount factor (optional)

Define right hand side of the system dynamics
def f(t, x, u):
 y = nmpyc.array(nx)
 ..
 return y

Initialize system dynamics
system = nmpyc.system(f, nx, nu, system_type, sampling_rate, t0, method)

Define stage cost
def l(t, x, u):
 return ..

Define terminal cost (optional)
def F(t, x):
 return ..

Initialize objective
objective = nmpyc.objective(l, F)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (h(t,x,u)=0, optional)
len_eqconstr = .. # number of equality constraints
def h(t, x, u):
 c_eq = nmpyc.array(len_eqconstr)
 ..
 return c_eq

constraints.add_constr('eq', h)

Add inequality constraints (g(t,x,u)>=0, optional)
len_ineqconstr = .. # number of inequality constraints
def g(t, x, u):
 c_ineq = nmpyc.array(len_ineqconstr)
 ..
 return c_ineq

constraints.add_constr('ineq', g)

Add terminal equality constraints (H(t,x)=0, optional)
len_terminaleq = .. # number of terminal equality constraints
def H(t, x):
 cend_eq = nmpyc.array(len_terminaleq)
 ..
 return cend_eq

constraints.add_constr('terminal_eq', H)

Add terminal equality constraints (G(t,x)>=0, optional)
len_terminalineq = .. # number of terminal equality constraints
def G(t, x):
 cend_ineq = nmpyc.array(len_terminalineq)
 ..
 return cend_ineq

constraints.add_constr('terminal_ineq', G)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

Autonomous Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: contiunous or discrete
sampling_rate = 1. # sampling rate h (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value
discount = 1. # dicount factor (optional)

Define right hand side of the system dynamics
def f(x, u):
 y = nmpyc.array(nx)
 ..
 return y

Initialize system dynamics
system = nmpyc.system(f, nx, nu, system_type, sampling_rate, method=method)

Define stage cost
def l(x, u):
 return ..

Define terminal cost (optional)
def F(x):
 return ..

Initialize objective
objective = nmpyc.objective(l, F)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (h(x,u)=0, optional)
len_eqconstr = .. # number of equality constraints
def h(x, u):
 c_eq = nmpyc.array(len_eqconstr)
 ..
 return c_eq

constraints.add_constr('eq', h)

Add inequality constraints (g(x,u)>=0, optional)
len_ineqconstr = .. # number of inequality constraints
def g(x, u):
 c_ineq = nmpyc.array(len_ineqconstr)
 ..
 return c_ineq

constraints.add_constr('ineq', g)

Add terminal equality constraints (H(x)=0, optional)
len_terminaleq = .. # number of terminal equality constraints
def H(x):
 cend_eq = nmpyc.array(len_terminaleq)
 ..
 return cend_eq

constraints.add_constr('terminal_eq', H)

Add terminal equality constraints (G(x)>=0, optional)
len_terminalineq = .. # number of terminal equality constraints
def G(x):
 cend_ineq = nmpyc.array(len_terminalineq)
 ..
 return cend_ineq

constraints.add_constr('terminal_ineq', G)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

Linear Quadratic Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: continuous or discrete
sampling_rate = 1. # sampling rate h (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value
discount = 1. # dicount factor (optional)

Define linear right hand side of the system dynamics f(x,u) = Ax + Bu
A = ..
B = ..

Initialize system dynamics
system = nmpyc.system.LQP(A, B, nx, nu, system_type, sampling_rate, method=method)

Define quadratic stage cost l(x,u) = x^TQx + u^TRu + 2*x^TNx
Q = ..
R = ..
N = nmpyc.zeros((nx,nu)) # optional

Define terminal cost x^TPx
P = nmpyc.zeros((nx,nx)) # optional

Initialize objective
objective = nmpyc.objective.LQP(Q, R, N, P)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (Ex + Fu = b, optional)
E_eq = ..
F_eq = ..
b_eq = ..
constraints.add_constr('eq', E_eq, F_eq, b_eq)

Add equality constraints (Ex + Fu >= b, optional)
E_ineq = ..
F_ineq = ..
b_ineq = ..
constraints.add_constr('ineq', E_ineq, F_ineq, b_ineq)

Add terminal equality constraints (Hx = 0, optional)
H_eq = ..
constraints.add_constr('terminal_eq', H_eq)

Add terminal equality constraints (Hx >= 0, optional)
H_ineq = ..
constraints.add_constr('terminal_ineq', H_ineq)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

FAQ

Why use the nmpyc_array module?

The idea of the nmpyc.nmpyc_array module is to provide a simple syntax for the input, which is similar to the one of NumPy.
At the same time we ensure a switching between symbolic calculation with CasADi and completely numeric calculations.

A completely numerical calculation is advantageous, for example, if non-differentiable functions have to be evaluated at critical points, e.g. the norm at the origin. Here the algorithmic differentiation of CasADi can lead to problems.

Therefore this module is built in a way that the array class can automatically switch between CasADi and NumPy objects. In addition, the individual functions are built in such a way that they recognize the type of the input and call the appropriate function from NumPy or CasADi accordingly.

What to do if a function is not defined in the nmpyc_array module?

We have tried to implement the most common functions. Nevertheless, it can happen that a certain function that you need is missing.

If this is the case, there is the possibility to implement an own overload of this function. A good orientation for this is the already programmed functions in the nmpyc.nmpyc_array module.

Another possibility in such cases is to use the call x.A to access the CasADi or NumPy array in which the entries of x are stored. Afterwards the appropriate necessary computations can be accomplished with the help of NumPy or CasADi functions.
Note, however, that in this way if applicable no smooth change between numeric and symbolic calculation is possible.

Which solver should be used?

In the most cases, the automatic selection of the solver by the program is recommended. In this way, if possible, the linear quadratic structure of a problem is exploited or at least algorithmic differentiation is still exploited to perform an advantageous optimization.

However, as already mentioned, this algorithmic differentiation can also lead to problems in some cases. For example, if a non-differentiable function must be evaluated at critical points, e.g. the norm at the origin. In such cases, a numerical calculation should be used for the optimization and a SciPy solver, such as SLSQP, should be selected.

Which discretization method should be used?

In our numerical simulations we have experienced that mostly a fixed step integration method like euler is sufficient to guarantee the necessary accuracy during the simulation. The advantage of these methods is that with them the largest speed up among the available integrators can be achieved.

However, if it is necessary to achieve higher integration accuracy by an adaptive integration method, one of the CasADi integrators, e.g. cvodes, should always be chosen if possible.

The SciPy integrators should only be considered as a kind of backup in case the other methods fail, since they lead to an above-average lag of time during the simulation in our implementation.

What to do if I a LaTeX Error occurs while plotting?

In our experience such errors occur mainly on MacOS if Spyder is used for programming, which in turn is opened via the Anaconda Navigator.
In this case it is sufficient to open spyder directly and not to take the detour via the Anaconda Navigator to solve the problem.

However, if this procedure does not solve the problem or the problem has another cause, it is also possible to disable the LaTeX labeling of the plots by setting the option usetex=False. For more details see nmpyc.result.result.plot().

How to Cite

If you use nMPyC for published work please cite it as

@misc{nmpyc,
 author = {Jonas Schie{\ss}l and Lisa Kr{\"u}gel},
 title ={{nMPyC} - A Python library for solving optimal control problems via MPC},
 howpublished = {\url{http://nmpyc.readthedocs.io/}},
 year = {2022}
}

Please remember to properly cite other software that you might be using too if you use (e.g. CasADi, IPOPT, …).

For any specific algorithm, also consider citing the original author’s paper.

References

	DAR11

	Moritz Diehl, Rishi Amrit, and James B. Rawlings. A lyapunov function for economic optimizing model predictive control. IEEE Transactions on Automatic Control, 56(3):703–707, mar 2011. doi:10.1109/TAC.2010.2101291 [https://doi.org/10.1109/TAC.2010.2101291].

	Grune21

	Lars Grüne. Mathematical control theory. 2021. Lecture Notes. URL: https://num.math.uni-bayreuth.de/de/team/lars-gruene/skripten/kontrolltheorie/kt_2021_en.pdf.

	GruneP17

	Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition. Communications and Control Engineering. Springer, Cham, Switzerland, 2017. URL: https://eref.uni-bayreuth.de/35127/.

	GruneSS15

	Lars Grüne, Willi Semmler, and Marleen Stieler. Using nonlinear model predictive control for dynamic decision problems in economics. Journal of Economic Dynamics and Control, 60:112–133, 2015. URL: https://eref.uni-bayreuth.de/20841/.

	HKHF03

	Josef L. Haunschmied, Peter M. Kort, Richard F. Hartl, and Gustav Feichtinger. A DNS-curve in a two-state capital accumulation model: a numerical analysis. Journal of Economic Dynamics and Control, 27(4):701–716, feb 2003. doi:10.1016/S0165-1889(01)00070-7 [https://doi.org/10.1016/S0165-1889(01)00070-7].

	LHDI10

	Filip Logist, Boris Houska, Moritz Diehl, and Jan Van Impe. Fast pareto set generation for nonlinear optimal control problems with multiple objectives. Structural and Multidisciplinary Optimization, 42(4):591–603, may 2010. doi:10.1007/s00158-010-0506-x [https://doi.org/10.1007/s00158-010-0506-x].

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nmpyc	

 	
 	
 nmpyc.nmpyc_array	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | X
 | Z

A

 	
 	A (array attribute)

 	abs() (in module nmpyc.nmpyc_array)

 	add_bound() (in module nmpyc.constraints.constraints)

 	add_constr() (in module nmpyc.constraints.constraints)

 	add_termianlcost() (in module nmpyc.objective.objective)

 	add_terminalconstr() (in module nmpyc.constraints.constraints)

 	arccos() (in module nmpyc.nmpyc_array)

 	
 	arccosh() (in module nmpyc.nmpyc_array)

 	arcsin() (in module nmpyc.nmpyc_array)

 	arcsinh() (in module nmpyc.nmpyc_array)

 	arctan() (in module nmpyc.nmpyc_array)

 	arctanh() (in module nmpyc.nmpyc_array)

 	array (class in nmpyc.nmpyc_array)

 	autonomous (objective attribute)

 	(system attribute)

C

 	
 	concatenate() (in module nmpyc.nmpyc_array)

 	constraints (class in nmpyc.constraints)

 	(model attribute)

 	
 	convert() (in module nmpyc.nmpyc_array)

 	cos() (in module nmpyc.nmpyc_array)

 	cosh() (in module nmpyc.nmpyc_array)

D

 	
 	diag() (in module nmpyc.nmpyc_array)

 	
 	dim (array attribute)

 	discount (objective attribute)

E

 	
 	ellapsed_time (result attribute)

 	ellapsed_time_per_itertaion (result attribute)

 	endcosts() (in module nmpyc.objective.objective)

 	
 	error (result attribute)

 	exp() (in module nmpyc.nmpyc_array)

 	eye() (in module nmpyc.nmpyc_array)

F

 	
 	f (system attribute)

 	
 	fill() (in module nmpyc.nmpyc_array.array)

 	flatten() (in module nmpyc.nmpyc_array.array)

H

 	
 	h (system attribute)

I

 	
 	inf (in module nmpyc.nmpyc_array)

J

 	
 	J() (in module nmpyc.objective.objective)

L

 	
 	l_cl (result attribute)

 	l_ol (result attribute)

 	linear_constr (constraints attribute)

 	load() (in module nmpyc.constraints.constraints)

 	(in module nmpyc.model.model)

 	(in module nmpyc.objective.objective)

 	(in module nmpyc.result.result)

 	(in module nmpyc.system.system)

 	
 	log() (in module nmpyc.nmpyc_array)

 	lower_bndend (constraints attribute)

 	lower_bndu (constraints attribute)

 	lower_bndx (constraints attribute)

 	LQP() (in module nmpyc.objective.objective)

 	(in module nmpyc.system.system)

M

 	
 	matrix_power() (in module nmpyc.nmpyc_array)

 	max() (in module nmpyc.nmpyc_array)

 	method (system attribute)

 	min() (in module nmpyc.nmpyc_array)

 	
 	model (class in nmpyc.model)

 	
 module

 	nmpyc.nmpyc_array

 	mpc() (in module nmpyc.model.model)

N

 	
 	N (model attribute)

 	(result attribute)

 	
 nmpyc.nmpyc_array

 	module

 	
 	nonlinear_constr (constraints attribute)

 	norm() (in module nmpyc.nmpyc_array)

 	nu (system attribute)

 	nx (system attribute)

O

 	
 	objective (class in nmpyc.objective)

 	(model attribute)

 	
 	ones() (in module nmpyc.nmpyc_array)

 	opti (model attribute)

P

 	
 	pi (in module nmpyc.nmpyc_array)

 	
 	plot() (in module nmpyc.result.result)

 	power() (in module nmpyc.nmpyc_array)

R

 	
 	reshape() (in module nmpyc.nmpyc_array)

 	
 	result (class in nmpyc.result)

S

 	
 	sampling_rate (result attribute)

 	save() (in module nmpyc.constraints.constraints)

 	(in module nmpyc.model.model)

 	(in module nmpyc.objective.objective)

 	(in module nmpyc.result.result)

 	(in module nmpyc.system.system)

 	set_integratorOptions() (in module nmpyc.system.system)

 	show_errors() (in module nmpyc.result.result)

 	sin() (in module nmpyc.nmpyc_array)

 	sinh() (in module nmpyc.nmpyc_array)

 	solve_ocp() (in module nmpyc.model.model)

 	
 	solver (result attribute)

 	sqrt() (in module nmpyc.nmpyc_array)

 	stagecost (objective attribute)

 	stagecosts() (in module nmpyc.objective.objective)

 	succes (result attribute)

 	sucessfull_itertaions (result attribute)

 	symbolic (array attribute)

 	system (class in nmpyc.system)

 	(model attribute)

 	system() (in module nmpyc.system.system)

 	system_discrete() (in module nmpyc.system.system)

 	system_type (system attribute)

T

 	
 	T (array attribute)

 	t0 (result attribute)

 	(system attribute)

 	t_cl (result attribute)

 	t_ol (result attribute)

 	tan() (in module nmpyc.nmpyc_array)

 	
 	tanh() (in module nmpyc.nmpyc_array)

 	terminalcost (objective attribute)

 	transpose() (in module nmpyc.nmpyc_array.array)

 	type (constraints attribute)

 	(objective attribute)

 	(system attribute)

U

 	
 	u_cl (result attribute)

 	u_ol (result attribute)

 	
 	upper_bndend (constraints attribute)

 	upper_bndu (constraints attribute)

 	upper_bndx (constraints attribute)

X

 	
 	x0 (result attribute)

 	
 	x_cl (result attribute)

 	x_ol (result attribute)

Z

 	
 	zeros() (in module nmpyc.nmpyc_array)

 _images/haunschmied_x01.png
X1 — X2 Open Loop Portrait

_images/haunschmied_x02.png
X1 — X2 Open Loop Portrait

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

2.0 2.0 3.0 3.0 4.0 4.5

5.0

_images/invpend_ol.png
Open Loop States

/
-,
v -
- -
- -
. - o
g -,
_—
A
v -
P,

i
-

e
-
-

AR e .

ARSIy

3 10

12

_images/reactor.png
Closed Loop

X1

(93]

100

0.5-

0.4-
0.3

9]kElS

0.2 1

12.0 -

|04}U0D

11.0-

30)

60
time

A0

20

_images/heatpump.png
Closed Loop

30- T
L2
9
© 25 -
N
20- //\—\
15000
U1
S 10000 -
5
O 5H000 -
O_ T T T T T T
0 o) 100 150 200 200

time

_images/invpend_cl.png
state

control

_20 i

Closed Loop

(93]

time

10

nav.xhtml

 Table of Contents

 		
 Welcome to nMPyC’s documentation!

 		
 Installation

 		
 Requirements

 		
 Installation using PIP

 		
 Installation by Source

 		
 Getting Started

 		
 Import nMPyC

 		
 Creating the System Dynamics

 		
 Creating the Objective

 		
 Creating the Constraints

 		
 Running Simulations

 		
 Advanced topics

 		
 Basics of model predictive control

 		
 Optimal control problems

 		
 The basic MPC algorithm

 		
 Notes and extensions

 		
 Further reading

 		
 API Reference

 		
 system

 		
 system

 		
 autonomous

 		
 f

 		
 h

 		
 method

 		
 nu

 		
 nx

 		
 system_type

 		
 t0

 		
 type

 		
 LQP

 		
 load

 		
 save

 		
 set_integratorOptions

 		
 system

 		
 system_discrete

 		
 objective

 		
 objective

 		
 autonomous

 		
 discount

 		
 stagecost

 		
 terminalcost

 		
 type

 		
 J

 		
 LQP

 		
 add_termianlcost

 		
 endcosts

 		
 load

 		
 save

 		
 stagecosts

 		
 constraints

 		
 constraints

 		
 linear_constr

 		
 lower_bndend

 		
 lower_bndu

 		
 lower_bndx

 		
 nonlinear_constr

 		
 type

 		
 upper_bndend

 		
 upper_bndu

 		
 upper_bndx

 		
 add_bound

 		
 add_constr

 		
 add_terminalconstr

 		
 load

 		
 save

 		
 model

 		
 model

 		
 N

 		
 constraints

 		
 objective

 		
 opti

 		
 system

 		
 load

 		
 mpc

 		
 save

 		
 solve_ocp

 		
 result

 		
 result

 		
 N

 		
 ellapsed_time

 		
 ellapsed_time_per_itertaion

 		
 error

 		
 l_cl

 		
 l_ol

 		
 sampling_rate

 		
 solver

 		
 succes

 		
 sucessfull_itertaions

 		
 t0

 		
 t_cl

 		
 t_ol

 		
 u_cl

 		
 u_ol

 		
 x0

 		
 x_cl

 		
 x_ol

 		
 load

 		
 plot

 		
 save

 		
 show_errors

 		
 nmpyc_array

 		
 array

 		
 abs

 		
 arccos

 		
 arccosh

 		
 arcsin

 		
 arcsinh

 		
 arctan

 		
 arctanh

 		
 concatenate

 		
 convert

 		
 cos

 		
 cosh

 		
 diag

 		
 exp

 		
 eye

 		
 log

 		
 matrix_power

 		
 max

 		
 min

 		
 norm

 		
 ones

 		
 power

 		
 reshape

 		
 sin

 		
 sinh

 		
 sqrt

 		
 tan

 		
 tanh

 		
 zeros

 		
 inf

 		
 pi

 		
 Examples

 		
 Chemical Reactor

 		
 Inverted Pendulum

 		
 Heat Pump

 		
 2d Investment Problem

 		
 Templates

 		
 Time-variant Problem

 		
 Autonomous Problem

 		
 Linear Quadratic Problem

 		
 FAQ

 		
 Why use the nmpyc_array module?

 		
 What to do if a function is not defined in the nmpyc_array module?

 		
 Which solver should be used?

 		
 Which discretization method should be used?

 		
 What to do if I a LaTeX Error occurs while plotting?

 		
 How to Cite

 		
 References

_static/file.png

_static/minus.png

_static/plus.png

