
nMPyC - A Python library for solving
optimal control problems via MPC

Release 1.0.0

Jonas Schießl and Lisa Krügel

Aug 28, 2023

CONTENTS

1 Contents 3

Bibliography 69

Python Module Index 71

Index 73

i

ii

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

nMPyC is a Python library for solving optimal control problems via model predictive control (MPC).

nMPyC can be understood as a blackbox method. The user can only enter the desired optimal control problem without
having much knowledge of the theory of model predictive control or its implementation in Python. Nevertheless, for
an advanced user, there is the possibility to adjust all parameters.

This library supports a variety of discretization methods and optimizers including CasADi and SciPy solvers.

In summary, nMPyC

• solves nonlinear finite horizon optimal control problems

• solves nonlinear optimal control problems with model predicitve control (MPC)

• uses algorithmic differentation via CasADi

• can chose between different discretization methods

• can chose between different solvers for nonlinear optimization (depending on the problem)

• supports time-varying optimal control problems

• supports the special structure of linear-quadratic optimal control problems

• supports discounted optimal control problems

• can save and load the simulation results

The nMPyC software is Python based and works therefore on any OS with a Python distribution (for more precise
requiremnents see the Installation section). nMPyC has been developed by Jonas Schießl and Lisa Krügel under the
supervision of Prof. Lars Grüne at the Chair of Applied Mathematic of University of Bayreuth. nMPyC is a further
devolpement in Python of the Matlab code that was implemented for the NMPC Book from Lars Grüne and Jürgen
Pannek [GruneP17].

CONTENTS 1

https://web.casadi.org/
https://scipy.org/
https://web.casadi.org/
https://num.math.uni-bayreuth.de/en/index.html
http://numerik.mathematik.uni-bayreuth.de/~lgruene/nmpc-book/matlab_nmpc.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

1.1.1 Requirements

The nMPyC package is dependent on the following libraries:

• CasADi

• NumPy

• matplotlib

• SciPy

• dill

• osqp

1.1.2 Installation using PIP

The easiest way to install the nMPyC package is to use PIP. To do so, you just need to run the command line

pip install nmpyc

The main advantage of this method is that the package is automatically added to the Python default path and all depen-
dencies are installed.

Additionally you can update the package by running

pip install nmpyc --upgrade

1.1.3 Installation by Source

To install the Python package by source, the source code from GitHub has to be downloaded. This can be done via Git
using the command

git clone https://github.com/nMPyC/nmpyc

Now the toolbox can be used by importing the package according to its storage path in the Python code by adding it to
the Python default path. To realize the letter case you can navigate to the location of the package and use

3

https://web.casadi.org
https://numpy.org
https://matplotlib.org/stable/index.html
https://scipy.org
https://dill.readthedocs.io/en/latest/dill.html
https://osqp.org/
https://github.com/nMPyC/nmpyc

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

pip install .

This command will automatically add the package to the Python default path and install the required Python packages
and their dependencies.

1.2 Getting Started

1.2.1 Import nMPyC

After the successfull installation of the nMPyC package, nMPyC has to be imported to our code. This can be done as
shown in the following code snippet

Add nMPyC to path (if necessary)
import sys
sys.path.append('../../path-to-nmpyc')

Import nmpyc
import nmpyc

Note that the first two lines can be omitted if nMPyC has already been added to the Python default path as described
in the Installation section. In this case the command import nmpyc is sufficient to import the nMPyC library.

Note: Please use the nmpyc.nmpyc_array functions and the nmpyc.nmpyc_array.array class for the calculations
in the code to ensure error-free functionality of the program. Further informations about this issue can be found in API
References and in the FAQ section.

1.2.2 Creating the System Dynamics

To define the system dynamics of the optimal control problem, we have to create a nmpyc.system object. We can define
the possibly time-dependent and nonlinear system dynamics using a function of the form

def f(t,x,u):
y = nmpyc.array(nx)
...
return y

If this function is created, the system can be initialized by calling

system = nmpyc.system(f,nx,nu,system_type)

Where nx is the dimension of the state, nu is the dimension of the control variable, and system_type is a string indicating
whether the system is continuous (continuous) or discrete (discrete).

Furthermore, the parameters sampling_rate (sampling rate), t0 (initial time) and method can optionally be adjusted
during the initialization of the system. The value of method determines the used integration method for the discretization
of the differential equation in the continuous case. By default the CasADi integrator cvodes is used.

Further options of the used integration method can be defined by the command

system.set_integratorOptions(dict())

4 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

For more informations (also about the parameters and their standard values) see the API-References nmpyc.system.
system .

1.2.3 Creating the Objective

To define the objective, we need to create – similar to the system dynamics – a nmpyc.objective object. To do so, we
first define the stage cost

def l(t,x,u):
...
return y

and add, optionally, a terminal cost of the form

def F(t,x):
...
return y

Now we can initialize the objective by calling

objective = nmpyc.objective(l, F)
Or alternatively without terminal costs
objective = nmpyc.objective(l)

For more informations see the API-References nmpyc.objective.objective.

1.2.4 Creating the Constraints

The optimal control problem can be extended with other constraints besides the necessary system dynamics. For this
reason, we must first create an empty nmpyc.constraints object using the command

system = nmpyc.constraints()

We can now add the desired constraints to this object step by step. These constraints can be created in different ways.
First, we can add box constraints in the form of bounds.

constraints.add_bound('lower', 'control', lbu) # lower bound for control
constraints.add_bound('upper', 'control', ubu) # upper bound for control

Here lbu or lbx is an nmpyc.nmpyc_array.array of dimension (1,nu) or (nu,1). To add bounds for the state or
terminal state, replace control with state or terminal in the above code and adjust the dimension of the array accordingly.

In addition to box constraints, general inequality and equality constraints can also be inserted.

Equality constraint h(t,x,u) = 0
def h(t,x,u):
y = mpc.array(len_constr)
...
return y

constraints.add_constr('eq', h)

Inequality constraint g(t,x,u) >= 0
def g(t,x,u):

(continues on next page)

1.2. Getting Started 5

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

y = mpc.array(len_constr)
...
return y

constraints.add_constr('ineq', g)

Terminal constraints of the form 𝐻(𝑡, 𝑥) = 0 or 𝐺(𝑡, 𝑥) ≥ 0 can also be added.

constraints.add_constr('terminal_eq', H)
constraints.add_constr('terminal_ineq', G)

Moreover it is possible to add linear equality and inequality constraints. For this purpose see nmpyc.constraints.
constraints.add_constr(). For further general informations see the API-References nmpyc.constraints.
constraints.

1.2.5 Running Simulations

After initializing all necessary objects, we can run simulations for our problem. We first create a mpc.model object and
combine the different parts of the optimal control problem by calling

model = nmpyc.model(objective, system, constraints)

The nmpyc.constraints object is optional and can be omitted for a problem without constraints. Modyfying the default
settings of the optimization, can be done with the help of the commands

model.opti.set_options(dict())
model.opti.set_solverOptions(dict())

For more informations about this methods see nmpyc.model.model.opti.

To start an open loop simulation, we execute the command

u_ol, x_ol = model.solve_ocp(x0,N,discount)

and for a closed loop simulation

res = model.mpc(x0,N,K,discount)

Here x0 is a nmpyc.nmpyc_array.array which defines the initial value, N is the MPC horizon and the parameter K
defines the number of MPC iterations. The parameter discount is optional and defines the discount factor (the default
is 1).

The result of the simulation can now be shown in the console by calling

print(res)

and as a visual output by calling

res.plot()

By default, the states and controls are displayed in two subplots. By passing a string as the first parameter (=args), the
plot can be customized. For example, by calling

res.plot('state')

6 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

only the states are plotted. Other keywords are control for the control, cost for the stage costs, and phase to make a
phase portrait of two states or controls. Furthermore, the plots displayed in this way can be additionally adjusted by
further prameters, see nmpyc.result.result.plot().

Further, the model and the simulation results can be saved for later use with the functions

model.save('path')
res.save('path')

These saved files can then be loaded with the help of

model = nmpyc.model.load('path')
res = nmpyc.result.load('path')

1.2.6 Advanced topics

The procedure described above is only an excerpt of the possibilities of the nMPyC Python library. For example, it is
also possible to create autonomous systems and use the linear quadratic structure of a problem. For further informations
see the Examples and Templates section. And for the implementation of linear system dynamics and quadratic costs,
see also nmpyc.system.system.LQP() and nmpyc.objective.objective.LQP().

1.3 Basics of model predictive control

Model predictive control (MPC) is an optimized-based method for obtaining an approximately optimal feedback
control for an optimal control problem on an infinite or finite time horizon. The basic idea of MPC is to predict the
future behavior of the controlled system over a finite time horizon and compute an optimal control input that, while
ensuring satisfaction of given system constraints, minimizes the objective function. In each sampling instant a finite
horizon open-loop optimal control problem is solved to calculate the control input. More precisley, this control input
is used to define the feedback which is applied to the system until the next sampling instant, at whicht the horizon is
shifted and the procedure is repeated again.

1.3.1 Optimal control problems

In order to describe the functionality of MPC we consider optimal control problems. To this end, we consider possibly
nonlinear difference equations of the form

𝑥(𝑘 + 1, 𝑥0) = 𝑓(𝑥(𝑘, 𝑥0), 𝑢(𝑘)), 𝑘 = 0, . . . , 𝑁 − 1,

𝑥(0) = 𝑥0

with 𝑁 ∈ N or discretized differential equations.

Further, we impose nonempty state and input constraint sets X ⊆ R𝑛 and U ⊆ R𝑚, respectively, as well as a nonempty
terminal constraint set X0 ⊆ R𝑛.

Now we use optimal control to determine 𝑢(0), . . . , 𝑢(𝑁 − 1). For this reason, we fix a stage cost ℓ : X × U → R
which may be a very general function and a optional terminal cost 𝐹 : X → R. Regardless which cost function is used
the objective function is defined by

𝐽𝑁 (𝑥0, 𝑢(·)) :=
𝑁−1∑︁
𝑘=0

ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘))

1.3. Basics of model predictive control 7

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

without terminal cost or by

𝐽𝑁 (𝑥0, 𝑢(·)) :=
𝑁−1∑︁
𝑘=0

ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘)) + 𝐹 (𝑥(𝑁, 𝑥0))

with terminal cost.

In summary, an optimal control problem without terminal conditions is given by

min
𝑢(·)∈U

𝐽𝑁 (𝑥0, 𝑢(·)) =
𝑁−1∑︁
𝑘=0

ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘))

s.t. 𝑥(𝑘 + 1, 𝑥0) = 𝑓(𝑥(𝑘, 𝑥0), 𝑢(𝑘)), 𝑘 = 0, . . . , 𝑁 − 1

𝑥(0) = 𝑥0

𝑥 ∈ X

(1.1)

and an optimal control problem with terminal conditions is given by

min
𝑢(·)∈U

𝐽𝑁 (𝑥0, 𝑢(·)) =
𝑁−1∑︁
𝑘=0

ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘)) + 𝐹 (𝑥(𝑁, 𝑥0))

s.t. 𝑥(𝑘 + 1, 𝑥0) = 𝑓(𝑥(𝑘, 𝑥0), 𝑢(𝑘)), 𝑘 = 0, . . . , 𝑁 − 1

𝑥(0) = 𝑥0

𝑥 ∈ X, 𝑥(𝑁, 𝑥0) ∈ X0

(1.2)

Additionally, with nMPyC it is possible to add constraints to the optimal control problem.

1.3.2 The basic MPC algorithm

Regardless of the type of the optimal control problem, the MPC algorithm is given by:

At each time instant 𝑗 = 0, 1, 2, · · · :

1. Measure the state 𝑥(𝑗) ∈ X of the system.

2. Set 𝑥0 := 𝑥(𝑗), solve the optimal control problem (with or without terminal conditions) and denote the
obtained optimal control sequence by 𝑢⋆(·) ∈ U𝑁 (𝑥0).

3. Define the MPC-feedback value 𝜇𝑁 (𝑥(𝑗)) := 𝑢⋆(0) ∈ U and use this control value in the next sampling
period (apply the feedback to the system).

1.3.3 Notes and extensions

A special case of an optimal control problem is a linear-quadratic problem. There, the stage cost is defined as a quadratic
function and the dynamics are linear. Thus, the linear-quadratic optimal control problem is given by

min
𝑢(·)∈U

𝐽𝑁 (𝑥0, 𝑢(·)) =
𝑁−1∑︁
𝑘=0

ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘)) + 𝐹 (𝑥(𝑁, 𝑥0))

=

𝑁−1∑︁
𝑘=0

𝑥(𝑘, 𝑥0)
𝑇𝑄𝑥(𝑘, 𝑥0) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘) + 2𝑥(𝑘, 𝑥0)

𝑇𝑁𝑢(𝑘)

+ 𝑥(𝑁, 𝑥0)
𝑇𝑃𝑥(𝑁, 𝑥0)

s.t. 𝑥(𝑘 + 1, 𝑥0) = 𝐴𝑥(𝑘, 𝑥0) +𝐵𝑢(𝑘), 𝑘 = 0, . . . , 𝑁 − 1

𝑥(0) = 𝑥0

𝑥 ∈ X, 𝑥(𝑁, 𝑥0) ∈ X0

(1.3)

8 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

where 𝑄,𝑅,𝑁, 𝑃 are weightening matrices and 𝐴,𝐵 the system matrices, each respectively of suitable dimension.
Further, the constraints have to be also linear and of the form

𝐸𝑥+ 𝐹𝑢 ≥ ℎ.

Note: nMPyC supports a time dependent formulation of optimal control problem. Hence, all functions, as 𝑓, ℓ, 𝐹 ,
can depend on the time instance 𝑗.

Note: nMPyC supports also discounted optimal control problems. In the discrete case the objective is defined as

𝐽𝑁 (𝑥0, 𝑢(·)) :=
𝑁−1∑︁
𝑘=0

𝛽𝑘ℓ(𝑥(𝑘, 𝑥0), 𝑢(𝑘))

with 𝛽 ∈ (0, 1) the discount factor.

1.3.4 Further reading

For further reading and more theoretical insights we kindly refer to [GruneP17]

1.4 API Reference

system A class used to define the system dynamics of an optimal
control problem.

1.4.1 system

class system(f , nx, nu, system_type='discrete', sampling_rate=1.0, t0=0.0, method='cvodes')
A class used to define the system dynamics of an optimal control problem.

The dynamics can be discrete or continuous. A discrete system is defined by a difference equation

𝑥(𝑡𝑘+1) = 𝑓(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘))

and a continous system is defined by the ordinary differential equation

�̇�(𝑡𝑘) = 𝑓(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘))).

In the letter case the differential equation will be discretized by a choosen integration method.

Parameters

• f (callable) – Function defining the right hand side of the system dynamics of the form
𝑓(𝑡, 𝑥, 𝑢) or 𝑓(𝑥, 𝑢) in the autonomous case. See also f .

• nx (int) – Dimension of the state. Must be a positive integer. See also nx.

• nu (int) – Dimension of the control. Must be a positive integer. See also nu.

1.4. API Reference 9

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

• system_type (str, optional) – String defining if the given system dynamics are discrete
or continuous. The default is ‘discrete’.

• sampling_rate (float, optional) – Sampling rate defining at which time instances the
dynamics are evaluated. The default is 1.

• t0 (float, optional) – Initial time for the optimal control problem. The default is 0. See
also t0.

• method (str, optional) – String defining which integration method should be used to
discretize the system dynamics. The default is ‘cvodes’. For further informations about the
provided integrators see method .

Attributes

system.autonomous If True, the system is time-invariant.
system.f Right hand side 𝑓(𝑡, 𝑥, 𝑢) of the system dynamics.
system.h Sampling time ℎ of the system.
system.method Integration method for discretization of the dynam-

ics.
system.nu Dimension of the control.
system.nx Dimension of the state.
system.system_type String defining whether the dynamics are discrete or

continuous.
system.t0 Initial time of the optimal control problem.
system.type Indicating whether the system dynamics are linear.

autonomous

Class property.

system.autonomous

If True, the system is time-invariant.

The right hand side of the dynamics 𝑓(𝑡, 𝑥, 𝑢) are not explicitly dependent on the time variable 𝑡. In this
case 𝑓(𝑡, 𝑥, 𝑢) = 𝑓(𝑥, 𝑢) holds.

Type
bool

f

Class property.

system.f

Right hand side 𝑓(𝑡, 𝑥, 𝑢) of the system dynamics.

The return value of this attribute depends on how the system is initialized. If it is initialized as a linear
system by LQP() a list containing the arrays defining the system dynamics are returned. If the system is
initalized by a possible nonlinear callable function this function is returned. Note, that even if autonomous
is True the returned funtion depends on the time and always has the form 𝑓(𝑡, 𝑥, 𝑢).

Type
callable or list of array

10 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

h

Class property.

system.h

Sampling time ℎ of the system.

This attribute defines at which time instances the dynamics are evaluated. This means the time 𝑡𝑘 is given
by the equation

𝑡𝑘 = 𝑡0 + 𝑘ℎ.

In addition, the control values are assumed to be constant during a sampling instance and can only be change
at the times 𝑡𝑘.

Type
float

method

Class property.

system.method

Integration method for discretization of the dynamics.

The following integrators are currently supported:

• from CasADi: cvodes, idas, collocation, oldcollocation and rk

• from SciPy: RK45, RK23, DOP853, Radau, BDF and LSODA

• from nMPyC: rk4, euler und heun (fixed step integration methods)

Type
str

nu

Class property.

system.nu

Dimension of the control.

The value of 𝑢(𝑡) at a given time 𝑡𝑘 is a element of R𝑛𝑢. In the linear case this value equals with the
dimension of the columns of the control matrix 𝐵 ∈ R𝑛𝑥×𝑛𝑢.

Type
int

1.4. API Reference 11

http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

nx

Class property.

system.nx

Dimension of the state.

The value of 𝑥(𝑡) at a given time 𝑡𝑘 is a element of R𝑛𝑥. In the linear case this value equals with the
dimension of the system matrix 𝐴 ∈ R𝑛𝑥×𝑛𝑥.

Type
int

system_type

Class property.

system.system_type

String defining whether the dynamics are discrete or continuous.

A discrete system is defined by a difference equation

𝑥(𝑡𝑘+1) = 𝑓(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘))

and a continous system is defined by the ordinary differential equation

�̇�(𝑡𝑘) = 𝑓(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘))).

Type
str

t0

Class property.

system.t0

Initial time of the optimal control problem.

The initial state 𝑥0 is measured at time 𝑡0. The state 𝑥(𝑡) is evaluated at the time instances 𝑡0 + 𝑘ℎ during
the MPC loop where ℎ is the sampling_rate.

Type
float

type

Class property.

system.type

Indicating whether the system dynamics are linear.

If LQP, the system dynamics are linear. The right hand side of the system dynamics is given by

𝑓(𝑥, 𝑢) = 𝐴𝑥+𝐵𝑢.

It also implies that the system is autonomous.

If the system dynamics are not initialized as linear with the LQP()method this attribute has the value NLP.

12 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Type
str

Methods

system.LQP Initialize the system with linear dynamics.
system.load Loads a nMPyC system object from a file.
system.save Saving the system to a given file with dill.
system.set_integratorOptions Set options for the integration method.
system.system Evaluate right hand side 𝑓(𝑡, 𝑥, 𝑢) of the dynamics.
system.system_discrete Evaluate discretized right hand side of the system dy-

namics.

LQP

Class method.

LQP(A, B, nx, nu, system_type='discrete', sampling_rate=1.0, t0=0.0, method='euler')
Initialize the system with linear dynamics.

In this case the right hand side of the dynamics has the form :

𝑓(𝑥, 𝑢) = 𝐴𝑥+𝐵𝑢

which is always autonomous. If not a fixed step method is choosen for integration the optimizer can not
use the linear structure of the problem during the optimization process.

Parameters

• A (array) – Matrix definig the linear state input on the right hand side of the dynamics.

• B (array) – Matrix definig the linear state input on the right hand side of the dynamics.

• nx (int) – Dimension of the state. Must be a positive integer. See also nx.

• nu (int) – Dimension of the control. Must be a positive integer. See also nu.

• system_type (str, optional) – String defining whether the given system dynamics
are discrete or continuous. The default is ‘discrete’.

• sampling_rate (float, optional) – Sampling rate defining at which time instances
the dynamics are evaluated. The default is 1.

• t0 (float, optional) – Initial time for the optimal control problem. The default is 0.
See also t0.

• method (str, optional) – String defining which integration method should be used to
discretize the system dynamics. The default is ‘euler’. For further informations about the
provided integrators see method .

Returns
lqp – nMPyC-system class object suitable to define a linear quadratic optimal control prob-
lem..

Return type
system

1.4. API Reference 13

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

load

Class method.

load(path)
Loads a nMPyC system object from a file.

The specified path must lead to a file that was previously saved with save().

Parameters
path (str) – String defining the path to the file containing the nMPyC system object.

For example

>>> system.load('system.pickle')

will load the system previously saved with save().

save

Class method.

save(self , path)
Saving the system to a given file with dill.

The path can be absolut or relative and the ending of the file is arbitrary.

Parameters
path (str) – String defining the path to the desired file.

For example

>>> system.save('system.pickle')

will create a file system.pickle containing the nMPyC system object.

set_integratorOptions

Class method.

set_integratorOptions(self , options)
Set options for the integration method.

Parameters
options (dict) – Dictionary containing the keywords of the required options and their val-
ues.

The available options are depending on the choosen method of integration. For the nMPyC integrators
the only available option is number_of_finit_elements which must be an int greater than zero and defines
how many discretation steps are computed during one sampling period defined by the sampling rate. The
available options for the CasADi integrators can be found at Sourceforge and for the SciPy integrators at
the Scipy documentation.

14 Chapter 1. Contents

https://dill.readthedocs.io/en/latest/dill.html
http://casadi.sourceforge.net/api/html/db/d3d/classcasadi_1_1Integrator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

system

Class method.

system(self , t, x, u)
Evaluate right hand side 𝑓(𝑡, 𝑥, 𝑢) of the dynamics.

Parameters

• t (float) – Time instant at which the system dynamics are evaluated.

• x (array) – State value at which the system dynamics are evaluated.

• u (array) – Control value at which the system dynamics are evaluated.

Returns
Value of the possible not discrete right hand side of the dynamics evaluated at the given inputs.

Return type
array

system_discrete

Class method.

system_discrete(self , t, x, u)
Evaluate discretized right hand side of the system dynamics.

Parameters

• t (float) – Time instant at which the system dynamics are evaluated.

• x (array) – State value at which the system dynamics are evaluated.

• u (array) – Control value at which the system dynamics are evaluated.

Returns
Value of the discretized right hand side of the dynamics evaluated at the given inputs.

Return type
array

objective A class used to define the objective of the optimal control
problem.

1.4.2 objective

class objective(stagecost, terminalcost=None)
A class used to define the objective of the optimal control problem.

The objective depends on the stage cost and optional on terminal cost and has the form

𝐽(𝑡, 𝑥, 𝑢,𝑁) :=

𝑁−1∑︁
𝑘=0

ℓ(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) + 𝐹 (𝑡𝑁 , 𝑥(𝑡𝑁)).

The values of the times 𝑡𝑘 are defined by initializing the nmpyc.system.system . For the slightly different form
of the objective in the discounted case see discount.

1.4. API Reference 15

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Parameters

• stagecost (callable) – A function defining the stage cost of the optimal control problem.
Has to be of the form ℓ(𝑡, 𝑥, 𝑢) or ℓ(𝑥, 𝑢) in the autonomous case. See also stagecost.

• terminalcost (callable, optional) – A function defining the terminal cost of the op-
timal control problem. Has to be of the form 𝐹 (𝑡, 𝑥) or 𝐹 (𝑥) in the autonomous case. If
None, no terminal cost is added. The default is None. See also terminalcost.

Attributes

objective.autonomous If True, the objective is autonomous.
objective.discount The discount factor of the objective.
objective.stagecost Stage cost ℓ(𝑡, 𝑥, 𝑢).
objective.terminalcost Terminal cost 𝐹 (𝑡, 𝑥).
objective.type Indicating whether the objective is quadratic or non-

linear.

autonomous

Class property.

objective.autonomous

If True, the objective is autonomous.

The stage cost and terminal cost of the objective 𝐽(𝑡, 𝑥, 𝑢,𝑁) are not explicitly dependend on the time
variable 𝑡. In this case 𝐽(𝑡, 𝑥, 𝑢,𝑁) = 𝐽(𝑥, 𝑢,𝑁) holds.

Type
bool

discount

Class property.

objective.discount

The discount factor of the objective.

For a discount factor 𝛿 ∈ (0, 1] the discounted objective function is given by

𝐽(𝑡, 𝑥, 𝑢,𝑁) =

𝑁−1∑︁
𝑘=0

𝛿𝑘ℓ(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) + 𝐹 (𝑡𝑁 , 𝑥(𝑡𝑁)).

By default the discount factor is equal to 1 𝛿 = 1. Then, we name the problem undiscounted. The discount
factor for the OCP of the MPC simulation can be set when the nmpyc.model.model.mpc() method is
called.

Type
float

16 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

stagecost

Class property.

objective.stagecost

Stage cost ℓ(𝑡, 𝑥, 𝑢).

The return value of this attribute depends on how the objective is initialized. If it is initialized as a quadratic
objective by LQP() a list containing the arrays defining the stage cost are returned. If the obejctive is
initalized by possibly nonlinear callable functions the function defining the stage cost is returned. Note,
that even if autonomous is True the returned function depends on the time 𝑡 and always has the form
ℓ(𝑡, 𝑥, 𝑢).

Type
callable or list of array

terminalcost

Class property.

objective.terminalcost

Terminal cost 𝐹 (𝑡, 𝑥).

The return value of this attribute depends on how the objective is initialized. If it is initialized as a quadratic
objective by LQP() the array defining the terminal cost is returned. If the obejctive is initalized by pos-
sibly nonlinear callable functions the function defining the terminal cost is returned. Note, that even if
autonomous is True the returned function depends on the time 𝑡 and always has the form ℓ(𝑡, 𝑥, 𝑢).

Type
callable or array

type

Class property.

objective.type

Indicating whether the objective is quadratic or nonlinear.

If LQP, the objective is quadratic. Then the stage cost is given by

ℓ(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢+ 2𝑥𝑇𝑁𝑥.

and the terminal cost is given by

𝐹 (𝑥) = 𝑥𝑇𝑃𝑥.

It also implies that the system is autonomous.

If the objective is not initialized as quadratic function with the LQP() method this attribute holds the value
NLP.

Type
str

1.4. API Reference 17

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Methods

objective.J Evaluate objective function of the OCP.
objective.LQP Initialize a quadratic objective.
objective.add_termianlcost Add terminal cost to the objective.
objective.endcosts Evaluate termninal cost of the objective.
objective.load Loads a nMPyC objective object from a file.
objective.save Saving the objective to a given file with dill.
objective.stagecosts Evaluate stage cost of the objective.

J

Class method.

J(self , t, x, u, N)
Evaluate objective function of the OCP.

The objective function is assembled from the stage cost ℓ(𝑡, 𝑥, 𝑢) and optional terminal cost 𝐹 (𝑡, 𝑥) and
has the form

𝐽(𝑡, 𝑥, 𝑢,𝑁) =

𝑁−1∑︁
𝑘=0

𝛿𝑘ℓ(𝑡𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) + 𝐹 (𝑡𝑁 , 𝑥(𝑡𝑁)).

Where 𝛿 ∈ (0, 1] is a possible discount factor, see discount.

Parameters

• t (array) – Times instant at which the stage costs and terminal cost are evaluated.

• x (array) – State trajectory at which the stage cost and terminal cost are evaluated.

• u (array) – Control sequence at which the stage cost is evaluated.

• N (int) – Maximum index up to which the stage cost are summed. During the MPC itera-
tion this index is equivalent to the MPC horizon.

Returns
J – Value of the objective function at the given input parameters.

Return type
array

LQP

Class method.

LQP(Q, R, N=None, P=None)
Initialize a quadratic objective.

In this case the stage cost of the objective has the form

ℓ(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢+ 2𝑥𝑇𝑄𝑢

and the optional terminal cost is defined as

𝐹 (𝑥, 𝑢) = 𝑥𝑇𝑃𝑥.

In this case the objective is always autonomous.

18 Chapter 1. Contents

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Parameters

• Q (array) – Matrix defining the cost of the state of the form 𝑥𝑇𝑄𝑥.

• R (array) – Matrix defining the cost of the control of the form 𝑢𝑇𝑅𝑢.

• N (array, optional) – Possible Matrix defining the mixed cost term of the form 2𝑥𝑇𝑁𝑢.
The default is None.

• P (array, optional) – Posible Matrix defining the terminal cost of the form 𝑥𝑇𝑃𝑥. The
default is None.

Returns
QP – nMPyC-objective class object suitable to define a linear quadratic optimal control prob-
lem.

Return type
objective

add_termianlcost

Class method.

add_termianlcost(self , terminalcost)
Add terminal cost to the objective.

The terminal cost must be a callable function of the form 𝐹 (𝑡, 𝑥) or 𝐹 (𝑥) in the autonomous case. If
terminal cost already exists they will be over written.

Parameters
terminalcost (callable) – A function defining the terminal cost of the optimal control
problem. Has to be of the form 𝐹 (𝑡, 𝑥) or 𝐹 (𝑥) in the autonomous case.

endcosts

Class method.

endcosts(self , t, x)
Evaluate termninal cost of the objective.

Parameters

• t (float) – Time instant at which the terminal cost is evaluated.

• x (array) – Current state at which the terminal cost is evaluated.

Returns
Terminal cost evaluated at the given input values.

Return type
array

1.4. API Reference 19

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

load

Class method.

load(path)
Loads a nMPyC objective object from a file.

The specified path must lead to a file that was previously saved with save().

Parameters
path (str) – String defining the path to the file containing the nMPyC objective object.

For example

>>> objective.load('objective.pickle')

will load the objective previously saved with save().

save

Class method.

save(self , path)
Saving the objective to a given file with dill.

The path can be absolut or relative and the ending of the file is arbitrary.

Parameters
path (str) – String defining the path to the desired file.

For example

>>> objective.save('objective.pickle')

will create a file objective.pickle containing the nMPyC objective object.

stagecosts

Class method.

stagecosts(self , t, x, u)
Evaluate stage cost of the objective.

Parameters

• t (float) – Time instant at which the stage cost is evaluated.

• x (array) – Current state at which the stage cost is evaluated.

• u (array) – Current control at which the stage cost is evaluated.

Returns
Stage cost evaluated at the given input values.

Return type
array

constraints Class used to define the constraints of the optimnal con-
trol problem.

20 Chapter 1. Contents

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.4.3 constraints

class constraints

Class used to define the constraints of the optimnal control problem.

Support for nonlinear, linear and box constraints are implemented and provided.

To define the constraints, first, an empty object have to be created. Then the individual constraints can be added
with the help of the methods add_bound() and add_constr().

Attributes

constraints.linear_constr Collection of all linear constraints.
constraints.lower_bndend Lower bound 𝑙𝑥 ∈ R𝑛𝑥 of the terminal state.
constraints.lower_bndu Lower bound 𝑙𝑢 ∈ R𝑛𝑢 for the control.
constraints.lower_bndx Lower bound 𝑙𝑥 ∈ R𝑛𝑥 of the state.
constraints.nonlinear_constr Collection of all nonlinear constraints.
constraints.type Indicating whether all constraints are linear.
constraints.upper_bndend Upper bound 𝑢𝑥 ∈ R𝑛𝑥 of the terminal state.
constraints.upper_bndu Upper bound 𝑢𝑢 ∈ R𝑛𝑢 of the control.
constraints.upper_bndx Upper bound 𝑢𝑥 ∈ R𝑛𝑥 of the state.

linear_constr

Class property.

constraints.linear_constr

Collection of all linear constraints.

This dictionary has the following form:

>>> linear_constr = {'eq': [..], 'ineq': [..],
>>> 'terminal_eq': [..], 'terminal_ineq': [..]}

The arrays that define the constraints are saved as lists which are contained in the dictionary. For example

>>> linear_constr['eq'][0]

returns a list with the arrays 𝐻 , 𝐹 and ℎ defining the first equality constraint

𝐻𝑥+ 𝐹𝑢 = ℎ.

Type
dict

1.4. API Reference 21

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

lower_bndend

Class property.

constraints.lower_bndend

Lower bound 𝑙𝑥 ∈ R𝑛𝑥 of the terminal state.

For the terminal state 𝑥(𝑡𝑁) the inequality

𝑥𝑖(𝑡𝑁) ≥ 𝑙𝑥𝑖
for 𝑖 = 1, . . . , 𝑛𝑥

holds as a constraint.

Type
array

lower_bndu

Class property.

constraints.lower_bndu

Lower bound 𝑙𝑢 ∈ R𝑛𝑢 for the control.

For all controls 𝑢(𝑡𝑘) the inequalities

𝑢𝑖(𝑡𝑘) ≥ 𝑙𝑢𝑖 for 𝑖 = 1, . . . , 𝑛𝑢

hold as a constraint.

Type
array

lower_bndx

Class property.

constraints.lower_bndx

Lower bound 𝑙𝑥 ∈ R𝑛𝑥 of the state.

For all states 𝑥(𝑡𝑘) the inequalities

𝑥𝑖(𝑡𝑘) ≥ 𝑙𝑥𝑖 for 𝑖 = 1, . . . , 𝑛𝑥

hold as a constraint.

Type
array

nonlinear_constr

Class property.

constraints.nonlinear_constr

Collection of all nonlinear constraints.

This dictionary has the following form:

22 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

>>> nonlinear_constr = {'eq': [..], 'ineq': [..],
>>> 'terminal_eq': [..], 'terminal_ineq': [..]}

In the lists contained in the dictionary the functions defining the constraints are saved. For example

>>> nonlinear_constr['eq'][0]

returns the function ℎ(𝑡, 𝑥, 𝑢) defining the first equality constraint

ℎ(𝑡, 𝑥, 𝑢) = 0.

Type
dict

type

Class property.

constraints.type

Indicating whether all constraints are linear.

If LQP, all constraints are linear. Then all constraints are of the form

𝐸𝑥+ 𝐹𝑢 ≤ ℎ

If at least one constraint is initialized as a nonlinear constraint this attribute has the value NLP.

Type
str

upper_bndend

Class property.

constraints.upper_bndend

Upper bound 𝑢𝑥 ∈ R𝑛𝑥 of the terminal state.

For the terminal state 𝑥(𝑡𝑁) the inequalities

𝑥𝑖(𝑡𝑁) ≤ 𝑢𝑥𝑖 for 𝑖 = 1, . . . , 𝑛𝑥

hold as a constraint.

Type
array

upper_bndu

Class property.

constraints.upper_bndu

Upper bound 𝑢𝑢 ∈ R𝑛𝑢 of the control.

For all controls 𝑢(𝑡𝑘) the inequalities

𝑢𝑖(𝑡𝑘) ≤ 𝑢𝑢𝑖
for 𝑖 = 1, . . . , 𝑛𝑢

hold as a constraint.

1.4. API Reference 23

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Type
array

upper_bndx

Class property.

constraints.upper_bndx

Upper bound 𝑢𝑥 ∈ R𝑛𝑥 of the state.

For all states 𝑥(𝑡𝑘) the inequalities

𝑥𝑖(𝑡𝑘) ≤ 𝑢𝑥𝑖 for 𝑖 = 1, . . . , 𝑛𝑥

hold as a constraint.

Type
array

Methods

constraints.add_bound Add bounds as linear constraints to the OCP.
constraints.add_constr Add linear or nonlinear constraints to the OCP.
constraints.add_terminalconstr Add linear or nonlinear terminal constraints to the

OCP.
constraints.load Loads a nMPyC constraints object from a file.
constraints.save Saving the constraints to a given file with dill.

add_bound

Class method.

add_bound(self , bnd_type, variable, bound)
Add bounds as linear constraints to the OCP.

Note while adding the bound it is not checked if the bounds have the correct shape. This will be verified
later during the optimization progress.

Parameters

• bnd_type (str) – String defining whether the bound is a lower or upper bound.

• variable (str) – String defining on which variable the bound should be applied. Possible
values are state, control and terminal.

• bound (array) – Array containing the values of the bound.

For example

>>> constraints.add_bound('lower', 'state', lbx)

will add lbx as lower_bndx while

>>> constraints.add_bound('upper', 'terminal', ub_end)

will add ub_end as upper_bndend .

24 Chapter 1. Contents

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

add_constr

Class method.

add_constr(self , cons_type, *args)
Add linear or nonlinear constraints to the OCP.

Nonlinear inequality constraints are of the form

𝑔(𝑡, 𝑥, 𝑢) ≥ 0 or 𝑔(𝑥, 𝑢) ≥ 0.

Nonlinear equality constraints are of the form

ℎ(𝑡, 𝑥, 𝑢) = 0 or ℎ(𝑥, 𝑢) = 0.

Linear inequality constraints are of the form

𝐸𝑥+ 𝐹𝑢 ≥ ℎ.

Linear equality constraints are of the form

𝐸𝑥+ 𝐹𝑢 = ℎ.

For the form of terminal constrains see add_terminalconstr().

Parameters

• cons_type (str) – String that defines the type of the constraints. Possible values are eq,
ineq, terminal_eq and terminal_ineq.

• *args (callable or arrays) – Function defining the (nonlinear) constraints or arrays
defining the linear constraints. In the letter case the order of arguments are E, F, h and if h
is undefined this array is set to zero.

For example

>>> constraints.add_constr('ineq', E, F, h)

will add a linear inequality constraint to linear_constr while

>>> constraints.add_constr('terminal_eq',h_end)

will add a nonlinear equality terminal constraint to nonlinear_constr.

add_terminalconstr

Class method.

add_terminalconstr(self , cons_type, *args)
Add linear or nonlinear terminal constraints to the OCP.

Nonlinear terminal inequality constraints are of the form

𝑔(𝑡, 𝑥) ≥ 0 or 𝑔(𝑥) ≥ 0.

Nonlinear terminal equality constraints are of the form

ℎ(𝑡, 𝑥) = 0 or ℎ(𝑥) = 0.

1.4. API Reference 25

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Linear terminal inequality constraints are of the form

𝐸𝑥 ≥ ℎ.

Linear terminal equality constraints are of the form

𝐸𝑥 = ℎ.

Parameters

• cons_type (str) – String that defines the type of the terminal constraints. Possible values
are eq or ineq.

• *args (callable or arrays) – Function defining the (nonlinear) terminal constraints
or arrays defining the linear constraints. In the letter case the order of arguments are E, h
and if h is undefined this array is set to zero.

For example

>>> constraints.add_terminalconstr('ineq', E, F, h)

will add a linear inequality terminal constraint to linear_constr while

>>> constraints.add_constr('eq',h)

will add a nonlinear equality terminal constraint to nonlinear_constr.

load

Class method.

load(path)
Loads a nMPyC constraints object from a file.

The specified path must lead to a file that was previously saved with save().

Parameters
path (str) – String defining the path to the file containing the nMPyC constraints object.

For example

>>> constraints.load('constraints.pickle')

will load the constraints previously saved with save().

save

Class method.

save(self , path)
Saving the constraints to a given file with dill.

The path can be absolut or relative and the ending of the file is arbitrary.

Parameters
path (str) – String defining the path to the desired file.

For example

26 Chapter 1. Contents

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

>>> constraints.save('constraints.pickle')

will create a file constraints.pickle containing the nMPyC constraints object.

model Class that contains all the components of the optimal
control problem.

1.4.4 model

class model(objective, system, constraints=None)
Class that contains all the components of the optimal control problem.

Can be used to perform open and closed loop simulations.

Parameters

• objective (objective) – nMPyC-objective defining the objective of the optimal control
problem.

• system (system) – nMPyC-system defining the system dynamics of the optimal control
problem.

• constraints (constraints optional) – nMPyC-constraints defining the constraints of
the optimal control problem. If constraints is None the problem is unconstrained. The default
is None.

Attributes

model.N Prediction horizon of the MPC loop.
model.constraints Constraints of the optimal control problem.
model.objective Objective of the optimal control problem.
model.opti Optimizer for the optimal control problem.
model.system System dynamics of the optimal control problem.

N

Class property.

model.N

Prediction horizon of the MPC loop.

Type
int

1.4. API Reference 27

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

constraints

Class property.

model.constraints

Constraints of the optimal control problem.

Type
constraints

objective

Class property.

model.objective

Objective of the optimal control problem.

Type
objective

opti

Class property.

model.opti

Optimizer for the optimal control problem.

This property can be used to set different optimization options. A distinction is made between basic settings
of the optimizer and solver-specific settings.

The basic settings can be adjusted by calling

>>> model.opti.set_options({..})

The dictionary that is passed can contain the following entries

28 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Parameter Description Default value
solver String defining which solver is

for
optimization. Currently sup-
ported solvers are

• ipotpt
• sqpmethod
• ospq
• SLSQP
• trust-constr

For auto a suitable solver de-
pending on other
options and parameters is se-
lected.

auto

full_discretization If True, the method of full dis-
cretiziation is
used for optimization. Other-
wise the the system
dynamics is resolved in the ob-
jective function.

True

tol The toleranz of the solver.
If the solver distinguishes be-
tween relative
and absolute tolerances, both are
set to this
value.

1e-06

maxiter Maximal number of iterations
during the
optimization progress.

5000

verbose If True, the verbose option of the
selected
solver ist activated.

False

initial_guess Initial guess for the optimization
variable u.
Must be an array of shape
(nx,N).
If the initial guess has not the
right shape or
is None it will be set to
nmpyc.ones((nu,N))*0.1
by default.

None

The auto option of the solver selection follows the rule

1. If the optimal control problem is recognized as a LQP and a fixed step discretization of the system is
given, osqp is selected.

2. If a condition of 1. is violated and not a SciPy discretization method is choosen, ipopt is selected.

3. Otherwise SLSQP is selected.

The solver-specific settings can be custamized by calling

1.4. API Reference 29

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

>>> model.opt.set_solverOptions({..})

Valid parameters which the passed dictionary can contain are depending on the selected solver. For a list
of these settings take a look at

• Sourceforge for the CasADi solvers

• SciPy Documentation for the SciPy solvers

• OSQP Website for the osqp solver

Type
opti

system

Class property.

model.system

System dynamics of the optimal control problem.

Type
system

Methods

model.load Loads a nMPyC model object from a file.
model.mpc Solves the optimal control problem via model predic-

tive control.
model.save Saving the model to a given file with dill.
model.solve_ocp Solves the finit horizon optimal control problem.

load

Class method.

load(path)
Loads a nMPyC model object from a file.

The specified path must lead to a file that was previously saved with save().

Parameters
path (str) – String defining the path to the file containing the nMPyC model object.

For example

>>> model.load('model.pickle')

will load the model previously saved with save().

30 Chapter 1. Contents

http://casadi.sourceforge.net/v2.0.0/api/html/d6/d07/classcasadi_1_1NlpSolver.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://osqp.org/docs/interfaces/solver_settings.html
https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

mpc

Class method.

mpc(self , x0, N , K , discount=None)
Solves the optimal control problem via model predictive control.

Parameters

• x0 (array) – Initial state of the optimal control problem.

• N (int) – MPC horizon.

• K (int) – Number of MPC itertaions.

• discount (float, optional) – Discountfactor of the objective. The default is None.

Returns
res – nMPyC result object containing the optimiaztion results of the closed and open loop
simulations.

Return type
result

save

Class method.

save(self , path)
Saving the model to a given file with dill.

The path can be absolut or relative and the ending of the file is arbitrary.

Parameters
path (str) – String defining the path to the desired file.

For example

>>> model.save('objective.pickle')

will create a file model.pickle containing the nMPyC model object.

solve_ocp

Class method.

solve_ocp(self , x0, N , discount=None)
Solves the finit horizon optimal control problem.

Parameters

• x0 (array) – Initial value of the optimal control problem.

• N (int) – Prediction horizon of the control problem.

• discount (float, optional) – Discountfactor of the objective. The default is None.

Returns

• u_ol (array) – Optimal control sequence.

• x_ol (array) – Optimal trajectory corresponding to the optimal control sequence.

1.4. API Reference 31

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

result Class used to store the simulation results of the MPC
simulation.

1.4.5 result

class result(x0, t0, h, N , K)
Class used to store the simulation results of the MPC simulation.

To obtain the individual components of the simulation, such as closed loop and open loop results, the individual
attributes need to be called.

Also the result object contains information about errors and other solver statistics, which can be used for further
investigation of the simulation progress.

Additionally, this class provides a way to visualize the results in a suitable way with the plot() method.

Parameters

• x0 (array) – Initial state.

• t0 (float) – Initial time.

• h (float) – Sampling rate.

• N (int) – MPC horizon.

• K (int) – Number of MPC Interations.

32 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Attributes

result.N MPC horizon
result.ellapsed_time Total ellapsed time for the closed loop simulation.
result.ellapsed_time_per_itertaion List containing the ellapsed time of every single iter-

taion of the closed loop simulation.
result.error Error message with which the solver failed.
result.l_cl Stage costs evaluated at the closed loop trajectory and

feedback.
result.l_ol List containing the stage costs evaluated at the open

loop trajectories and controls of all MPC itertaions.
result.sampling_rate Sampling rate.
result.solver Name of the choosen optimization method.
result.succes True if the solver converged sucessfully in all MPC

itertaions, false if the MPC loop abort prematurely.
result.sucessfull_itertaions Number of succesfull MPC iterations.
result.t0 Initial time
result.t_cl Time sequence at which the closed loop states and

controls are evaluated.
result.t_ol List containing the time sequences at which the

closed loop states and controls are evaluated in the
open loop simulations.

result.u_cl Closed loop feedback.
result.u_ol List containing the open loop optimal control values

of all MPC itertaions.
result.x0 Initial state.
result.x_cl Closed loop trajectory.
result.x_ol List containing the open loop trajectories of all MPC

itertaions.

N

Class property.

result.N

MPC horizon

Type
int

ellapsed_time

Class property.

result.ellapsed_time

Total ellapsed time for the closed loop simulation.

Type
float

1.4. API Reference 33

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

ellapsed_time_per_itertaion

Class property.

result.ellapsed_time_per_itertaion

List containing the ellapsed time of every single itertaion of the closed loop simulation.

Type
list of float

error

Class property.

result.error

Error message with which the solver failed. If success is True error is None.

Type
str

l_cl

Class property.

result.l_cl

Stage costs evaluated at the closed loop trajectory and feedback.

Type
numpy.ndarray

l_ol

Class property.

result.l_ol

List containing the stage costs evaluated at the open loop trajectories and controls of all MPC itertaions.

Type
list of numpy.ndarrays

sampling_rate

Class property.

result.sampling_rate

Sampling rate.

Type
float

34 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

solver

Class property.

result.solver

Name of the choosen optimization method.

Type
str

succes

Class property.

result.succes

True if the solver converged sucessfully in all MPC itertaions, false if the MPC loop abort prematurely.

Type
bool

sucessfull_itertaions

Class property.

result.sucessfull_itertaions

Number of succesfull MPC iterations.

Type
int

t0

Class property.

result.t0

Initial time

Type
float

t_cl

Class property.

result.t_cl

Time sequence at which the closed loop states and controls are evaluated.

Type
numpy.ndarray

1.4. API Reference 35

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

t_ol

Class property.

result.t_ol

List containing the time sequences at which the closed loop states and controls are evaluated in the open
loop simulations.

Type
list of numpy.ndarrays

u_cl

Class property.

result.u_cl

Closed loop feedback.

Type
numpy.ndarray

u_ol

Class property.

result.u_ol

List containing the open loop optimal control values of all MPC itertaions.

Type
list of numpy.ndarrays

x0

Class property.

result.x0

Initial state.

Type
numpy.ndarray

x_cl

Class property.

result.x_cl

Closed loop trajectory.

Type
numpy.ndarray

36 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

x_ol

Class property.

result.x_ol

List containing the open loop trajectories of all MPC itertaions.

Type
list of numpy.ndarrays

Methods

result.load Loads a nMPyC result object from a file.
result.plot Plot the results of the MPC simulation.
result.save Saving the result to a given file with dill.
result.show_errors Shows the errors that occurred during the simualtion.

load

Class method.

load(path)
Loads a nMPyC result object from a file.

The specified path must lead to a file that was previously saved with save().

Parameters
path (str) – String defining the path to the file containing the nMPyC result object.

For example

>>> result.load('result.pickle')

will load the result previously saved with save().

plot

Class method.

plot(self , *args, **kwargs)
Plot the results of the MPC simulation.

If no argument is passed, by default the closed loop states and controls are plotted seperated in two subplots.

If only a specific component of the solution should be plotted, this can be customized by using a string as
the first argument. Valid arguments for this are

• state for only plotting the closed loop state trajectories

• control for only plotting the closed loop control values

• cost for plotting the stage costs evaluated at the closed loop results

• phase for plotting a phase portrait of two components of the solution.

1.4. API Reference 37

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Further adjustments can be made with the help of the following keyword arguments.

Argument Description Default value
xk List specifying which compo-

nents of the state
are plotted.

[1,. . . ,nx]

uk List specifying which compo-
nents of the control
are plotted.

[1,. . . ,nu]

show_ol If True, the open loop simulation
rersults are
also plotted additionaly to the
closed loop
results.

True

iters List indicating from which itera-
tion on the open
loop results should be plotted.
Will be ignored if show_ol is
False.

[1,. . . ,K+1]

usetex If True, the captions are dis-
played in TEX style.

True

grid If True, a grid is displayed in the
background
of the plot.

True

show_legend If True, a legend will be dis-
played inside
the plot.

True

phase1 Phase 1 of the phase portrait
plot.
Has the form x_k or u_k, where
k determines
the respective component.
Will be ignored if args!=’phase’.

None

phase2 Phase 2 of the phase portrait
plot.
Has the form x_k or u_k, where
k determines
the respective component.
Will be ignored if args!=’phase’.

None

dpi resolution of the figure, see 100
figsize The size of the figure.

Has the form [width, height] in
inches.

[8., 6.]

linewidth Set the line width in points.
2.

fontsize The font size of the annotations.
If the value is numeric the size
will be the
absolute font size in points.

14.

38 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

save

Class method.

save(self , path)
Saving the result to a given file with dill.

The path can be absolut or relative and the ending of the file is arbitrary.

Parameters
path (str) – String defining the path to the desired file.

For example

>>> result.save('result.pickle')

will create a file result.pickle containing the nMPyC result object.

show_errors

Class method.

show_errors(self)
Shows the errors that occurred during the simualtion.

For example, if the solver ipopt was selected and the defined optimal control problem is infeasible, this
method will print out the message

An error occured during itertaion 1 of 100:
Error in Opti::solve [OptiNode] at . . . /casadi/core/optistack.cpp:159:
. . . /casadi/core/optistack_internal.cpp:999: Assertion “return_success(accept_limit)” failed:
Solver failed. You may use opti.debug.value to investigate the latest values of variables. return_status is
‘Infeasible_Problem_Detected’

For more informations about the error messages take a look at the documentation of the respective solver.

If the simulation was completly succesfull, the message

No error occured during the MPC-Loop

will be printed out.

nmpyc_array Module for array definition and computation.

1.4. API Reference 39

https://dill.readthedocs.io/en/latest/dill.html

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.4.6 nmpyc_array

Module for array definition and computation.

This module provides an array class and associated functions for corresponding matrix calculations.

The goal of this class and the individual functions is to enable compatibility of calculations with both casadi and numpy
objects without changing the syntax of the program. This enables the user to program as easily as possible and at the
same time to switch between symbolic and numeric calculation.

Classes

array Class used to save arrays with symbolic or numeric val-
ues.

array

class array(dim=0)
Class used to save arrays with symbolic or numeric values.

The symbolic entries are provided by CasADi and will be transformed automatically to numeric values of numpy
type if it is posiible.

Parameters
dim (int, tuple, cas.MX, cas.SX, cas.DM, list or numpy.ndarray, optional)
– Dimension of which an empty array is created or object from which the entries and dimension
are copied. The default is 0.

Attributes

array.A Array containing all entries.
array.T Transposed array.
array.dim Dimension of the array.
array.symbolic True if array has symbolic entries, False otherwise.

A

Class property.

array.A

Array containing all entries.

Type
casadi.MX or numpy.array

40 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

T

Class property.

array.T

Transposed array.

Type
array

dim

Class property.

array.dim

Dimension of the array.

Type
tuple

symbolic

Class property.

array.symbolic

True if array has symbolic entries, False otherwise.

Type
bool

Methods

array.fill Fill all entries with one value.
array.flatten Flat array to one dimension.
array.transpose Transpose array.

fill

Class method.

fill(self , a)
Fill all entries with one value.

Parameters
a (int or float) – Value that all entries should take.

1.4. API Reference 41

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

flatten

Class method.

flatten(self)
Flat array to one dimension.

Returns
y – Flatten array with dimension (1,n).

Return type
array

transpose

Class method.

transpose(self)
Transpose array.

Returns
y – Transposed array.

Return type
array

42 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Functions

abs Calculates the absolute value of a number or array.
arccos Calculates the arcuscosinus of a given number or array
arccosh Calculates the arcuscosinus hypernolicus of a given

number or array
arcsin Calculates the arcussinus of a given number or array
arcsinh Calculates the arcussinus hyperbolicus of a given num-

ber or array
arctan Calculates the arcustangens of a given number or array
arctanh Calculates the arcustangens hyperbolicus of a given

number or array
concatenate Join a sequence of arrays along an existing axis.
convert Convert a numpy-, casadi- or nMPyC-array to another of

these intances.
cos Calculates the cosinus of a given number or array
cosh Calculates the cosinus hyperbolicus of a given number

or array
diag Creates an diagonal matrix from a given vector.
exp Calculates the exponential of a given number or array
eye Creates an array defining the idendity.
log Calculates the natural logarithm of a given number or

array
matrix_power Raises a square matrix to the n-th power.
max Return the maximal value of the arguments
min Returns the minimal value of the arguments
norm Returns the norm of a vector or matrix.
ones Creates an array with only entries equal to one.
power Calculates the (elementwise) n-th power of a number or

array.
reshape Reshape an array to a new size.
sin Calculates the sinus of a given number or array
sinh Calculates the sinus hyperbolicus of a given number or

array
sqrt Calculates the square root of a given number or array
tan Calculates the tangens of a given number or array
tanh Calculates the tangens hyperblicus of a given number or

array
zeros Creates an array with only zero entries.

1.4. API Reference 43

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

abs

abs(x)
Calculates the absolute value of a number or array.

arccos

arccos(x)
Calculates the arcuscosinus of a given number or array

arccosh

arccosh(x)
Calculates the arcuscosinus hypernolicus of a given number or array

arcsin

arcsin(x)
Calculates the arcussinus of a given number or array

arcsinh

arcsinh(x)
Calculates the arcussinus hyperbolicus of a given number or array

arctan

arctan(x)
Calculates the arcustangens of a given number or array

arctanh

arctanh(x)
Calculates the arcustangens hyperbolicus of a given number or array

concatenate

concatenate(arrays, axis=0)
Join a sequence of arrays along an existing axis.

Parameters

• arrays (tuple of casadi.MX, casadi.SX, casadi.DM or numpy.ndarrays) –
Sequence of arrays which will be concatenated. The arrays must have the same shape, except
in the dimension corresponding to axis.

• axis (int, optional) – The axis along which the arrays will be joined. The default is 0.

44 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Returns
The concatenated array.

Return type
array

convert

convert(a, dtype='auto')
Convert a numpy-, casadi- or nMPyC-array to another of these intances.

Parameters

• a (array, cas.MX, cas.SX, cas.DM or numpy.ndarray) – Array which should be
converted.

• dtype (str, optional) – Name of the class to which the array will be converted. The
default is ‘auto’.

Returns
The converted object.

Return type
numpy.ndarray, cas.MX, cas.SX, cas.DM

cos

cos(x)
Calculates the cosinus of a given number or array

cosh

cosh(x)
Calculates the cosinus hyperbolicus of a given number or array

diag

diag(x)
Creates an diagonal matrix from a given vector.

Parameters
x (array, numpy.ndarray, cas.MX, cas.SX or cas.DX, list) – Vector containing
the diagonal entries of the matrix.

Returns
Diagonal matrix with the desired diagonal elements.

Return type
array

1.4. API Reference 45

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

exp

exp(x)
Calculates the exponential of a given number or array

eye

eye(dim)
Creates an array defining the idendity.

Parameters
dim (int) – Dimnension of the idendity matrix.

Raises

• ValueError – If the given dimension is not supported.

• TypeError – If an input parameter has not the right type.

Returns
y – Idendity matrix as an instance of array.

Return type
array

log

log(x)
Calculates the natural logarithm of a given number or array

matrix_power

matrix_power(x, n)
Raises a square matrix to the n-th power.

Parameters

• x (int, float, numpy.ndarray, cas.MS, cas.SX or cas.DM) – Number or array
of which the n-th power should be computed.

• n (int or float) – Number defining the exponent.

max

max(*args)
Return the maximal value of the arguments

46 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

min

min(*args)
Returns the minimal value of the arguments

norm

norm(x, order=None)
Returns the norm of a vector or matrix.

Parameters

• x (array, numpy.ndarray, cas.MX, cas.SX or cas.DM) – Vector or matrix of
which the norm should be calculated.

• order (number or str, optional) – String defining the type of the norm. Posiible val-
ues are 1, 2, ‘fro’ or ‘inf’. The default is None.

ones

ones(dim)
Creates an array with only entries equal to one.

Parameters
dim (int or tuple) – Dimension of the array.

Raises

• ValueError – If the given dimension is not supported.

• TypeError – If the given dimension has not the right type.

Returns
y – An array of the given dimension with only entries equal to one.

Return type
array

power

power(x, n)
Calculates the (elementwise) n-th power of a number or array.

Parameters

• x (int, float, numpy.ndarray, cas.MS, cas.SX or cas.DM) – Number or array
of which the n-th power should be computed.

• n (int or float) – Number defining the exponent.

1.4. API Reference 47

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

reshape

reshape(a, new_size)
Reshape an array to a new size.

Parameters

• a (array) – .

• new_size (tuple) – New shape.

Returns
An array instance with the new shape.

Return type
array

sin

sin(x)
Calculates the sinus of a given number or array

sinh

sinh(x)
Calculates the sinus hyperbolicus of a given number or array

sqrt

sqrt(x)
Calculates the square root of a given number or array

tan

tan(x)
Calculates the tangens of a given number or array

tanh

tanh(x)
Calculates the tangens hyperblicus of a given number or array

48 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

zeros

zeros(dim)
Creates an array with only zero entries.

Parameters
dim (int or tuple) – Dimension of the array.

Raises

• ValueError – If the given dimension is not supported.

• TypeError – If the given dimension has not the right type.

Returns
y – An array of the given dimension with only zero entries.

Return type
array

Attributes

inf Constant to define infinity.
pi Constant to define the number pi.

inf

inf = inf

Constant to define infinity.

Type
float

pi

pi = 3.141592653589793

Constant to define the number pi.

Type
float

1.5 Examples

In addition to the information from the API References, the following examples are intended to provide guidance for
implementing your own problems.

To show the different possibilities of the nMPyC package, we illustrate them with different examples.

Therefore, the chemical reactor is a nonlinear autonomous problem, the inverted pendulum is a linear quadratic problem,
the heat pump is a nonlinear time-varying problem and the 2d investment problem is a discounted problem.

1.5. Examples 49

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.5.1 Chemical Reactor

We consider a single first-order, irreversible chemical reaction in an isothermal CSTR

𝐴→ 𝐵.

The material balances and the system data are provided in [DAR11] and is given by the discrete time nonlinear model

𝑐𝐴(𝑘 + 1) = 𝑐𝐴(𝑘) + ℎ

(︂
𝑄(𝑘)

𝑉
(𝑐𝐴𝑓 − 𝑐𝐴(𝑘))− 𝑘𝑟𝑐𝐴(𝑘)

)︂
𝑐𝐵(𝑘 + 1) = 𝑐𝐵(𝑘) + ℎ

(︂
𝑄(𝑘)

𝑉
(𝑐𝐵𝑓 − 𝑐𝐵(𝑘)) + 𝑘𝑟𝑐𝐵(𝑘)

)︂
,

in which 𝑐𝐴 ≥ 0 and 𝑐𝐵 ≥ 0 are the molar concentrations of𝐴 and𝐵 respectively,𝑄 ≤ 20 (L/min) is the flow through
the reactor and ℎ is the sampling rate in minutes. The constants and their meanings are given in table below.

Reactor constants
value unit

feed concentration of 𝐴 𝑐𝐴𝑓 1 mol/L
feed concentration of 𝐵 𝑐𝐵𝑓 0 mol/L
volume of the reactor 𝑉𝑅 10 L
rate constant 𝑘𝑟 1.2 L/(mol min)
sampling rate ℎ 0.5 min
initial value (𝑐𝐴0 , 𝑐

𝐵
0) (0.4, 0.2)

From this set of parameters we can compute the equilibrium (𝑐𝐴𝑒 , 𝑐
𝐵
𝑒 , 𝑄𝑒) = (12 ,

1
2 , 12) of the system.

To initialize the system dynamics a function that implements 𝑓(𝑥, 𝑢), where 𝑥 = (𝑐𝐴, 𝑐𝐵)
𝑇 and 𝑢 = 𝑄 has to be

defined.

V = 10.
cf_A = 1.
cf_B = 0.
k_r = 1.2
h = 0.5

def f(x,u):
y = nmpyc.array(2)
y[0] = x[0] + h*((u[0]/V) *(cf_A - x[0]) - k_r*x[0])
y[1] = x[1] + h*((u[0]/V) *(cf_B - x[1]) + k_r*x[1])
return y

After that, the nMPyC system object can be set by calling

system = nmpyc.system(f, 2, 1, system_type='discrete')

In the next step, the objective is defined by using the stage cost given by

ℓ(𝑐𝐴(𝑘), 𝑐𝐵(𝑘), 𝑄(𝑘)) =
1

2
|𝑐𝐴(𝑘)−

1

2
|2 + 1

2
|𝑐𝐵(𝑘)−

1

2
|2 + 1

2
|𝑄(𝑘)− 12|2

Since we do not need terminal cost, we can initialize the objective directly using the following implementation.

50 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

def l(x,u):
return 0.5 * (x[0]-0.5)**2 + 0.5 * (x[1]-0.5)**2 + 0.5 * (u[0]-12)**2

objective = nmpyc.objective(l)

In terms of the constraints we assume that

0 ≤ 𝑥1(𝑘)

<∞
for 𝑘 = 0, . . . , 𝑁

0 ≤ 𝑥2(𝑘)

<∞
for 𝑘 = 0, . . . , 𝑁

0 ≤ 𝑢(𝑘)

≤ 20

for 𝑘 = 0, . . . , 𝑁 − 1.

This can be realized in the code as follows:

constraints = nmpyc.constraints()
lbx = nmpyc.zeros(2)
ubu = nmpyc.ones(1)*20
lbu = nmpyc.zeros(1)
constraints.add_bound('lower','state', lbx)
constraints.add_bound('lower','control', lbu)
constraints.add_bound('upper','control', ubu)

Moreover, we consider the equilibrium (𝑐𝐴𝑒 , 𝑐
𝐵
𝑒 , 𝑄𝑒) as th terminal condition for our optimal control problem, which

is implemented as

xeq = nmpyc.array([0.5,0.5])
def he(x):

return x - xeq
constraints.add_constr('terminal_eq', he)

After all components of the optimal control problem have been implemented, we can now combine them into a model
and start the MPC loop. For this Purpose, we define

𝑥(0) = (0.4, 0.2)𝑇

and set 𝑁 = 15, 𝐾 = 100.

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([0.4,0.2])
res = model.mpc(x0,15,100)

Following the simulation we can visualize the results by calling

res.plot()

which generates the plot bellow.

1.5. Examples 51

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.5.2 Inverted Pendulum

We consider the mechanical model of an inverted rigid pendulum mounted on a carriage, see [Grune21], [GruneP17].

By means of physical laws an “exact” differential equation model can be derived. However, since in our case we like
to obtain a linear quadratic problem, we linearize the differential equation at the origin. Thus, we obtain the system
dynamics defined by

�̇�(𝑡) =

⎛⎜⎜⎝
0 1 0 0
𝑔 −𝑘 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠𝑥(𝑡) +

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠𝑢(𝑡).

Here, the state vector 𝑥 ∈ R4 consists of 4 components. 𝑥1 corresponds to the angle𝜓 of the pendulum, which increases
counterclockwise, where 𝑥1 = 0 corresponds to the upright pendulum. 𝑥2 is the angular velocity, 𝑥3 the position of
the carriage and 𝑥4 its velocity. The control 𝑢 is the acceleration of the carriage. The constant 𝑘 = 0.1 describes the
friction of the pendulum and the constant 𝑔 ≈ 9.81𝑚/𝑠2 is the acceleration due to gravity.

Since the system dynamics are linear, we can initialize them using the LQP method.

g = 9.81
k = 0.1
A = nmpyc.array([[0, 1, 0, 0],

[g, -k, 0, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])

B = nmpyc.array([0, 1, 0, 1])
(continues on next page)

52 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

system = nmpyc.system.LQP(A, B, 4, 1, 'continuous',
sampling_rate=0.1, method='rk4')

Note that we have to use one of the fixed step methods as euler, heun or rk4 as integration method if we like to exploit
the linear quadratic structure of the problem in the optimization.

In the next step, we have to define the objective of the optimal control problem. In doing so, we assume the stage cost

ℓ(𝑥, 𝑢) = 2𝑥𝑇𝑥+ 4𝑢𝑇𝑢.

Since we assume no terminal cost, we can implement the objective as shown in the following code snippet.

Q = 2*nmpyc.eye(4)
R = 4*nmpyc.eye(1)
objective = nmpyc.objective.LQP(Q, R)

Again, we use the LQP method to exploit the linear quadratic structure of the problem later.

In terms of the constraints we assume the state constraints

−9 ≤ 𝑥𝑖(𝑡) ≤ 5

for 𝑖 = 1, . . . , 4 and the control constraint

−20 ≤ 𝑢(𝑡) ≤ 6

This can be realized in the code as

constraints = nmpyc.constraints()
lbx = nmpyc.zeros(4)*(-9)
ubx = nmpyc.ones(4)*5
constraints.add_bound('lower','state', lbx)
constraints.add_bound('upper','state', ubx)
constraints.add_bound('lower', 'control', nmpyc.array([-20]))
constraints.add_bound('upper', 'control', nmpyc.array([6]))

After all components of the optimal control problem have been implemented, we can now combine them into a model
and start the MPC loop. For this Purpose, we define the inital value

𝑥(0) = (1, 1, 1, 1)𝑇

and set 𝑁 = 20, 𝐾 = 100.

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([1, 1, 1, 1])
res = model.mpc(x0,20,100)

Since the problem is linear-quadratic, the program automatically takes advantage of this fact and uses the appropriate
solver osqp. To change this and use for example the SciPy solver SLSQP, we can use the set_options method before
calling model.mpc().

model.opti.set_options(dict(solver='SLSQP'))

Note that changing the optimizer usually does not have any advantage and is therefore not necessarily recommended.
At this point we only like to demomnstrate the use of this function.

Following the simulation we can visualize the open and closed loop results by calling

1.5. Examples 53

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

res.plot() # plot closed loop results
res.plot('state', show_ol=True) # plot open loop states

which generates the plots bellow.

54 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.5.3 Heat Pump

This example describes a home heating system that involves the optimal control of a small heat pump coupled to a floor
heating system. The corresponding dynamic model is introduced in [LHDI10] and is given by

𝑥1 =
−𝑘𝑊𝑅

𝜌𝑊 𝑐𝑊𝑉𝐻
𝑥1 +

𝑘𝑊𝑅

𝜌𝑊 𝑐𝑊𝑉𝐻
𝑥2 +

1

𝜌𝑊 𝑐𝑊𝑉𝐻
𝑢 (1.4)

𝑥2 =
𝑘𝑊𝑅

𝑘𝐺𝜏𝐺
𝑥1 −

𝑘𝑊𝑅 + 𝑘𝐺
𝑘𝐺𝜏𝐺

𝑥2 +
1

𝜏𝐺
𝑇amb, (1.5)

where 𝑥1 denotes the temperature of the water returning from the heating, 𝑥2 denotes the room temperature and 𝑢 is
the heat supplied from the heat pump to the floor. Further, the ambient temperature

𝑇amb(𝑡) = 2.5 + 7.5 sin

(︂
2𝜋𝑡

𝑡𝑓
− 𝜋

2

)︂
describes a sinusoidal disturbance from the outside temperature where 𝑡𝑓 = 24. The remaining constants are summa-
rized in the table below.

1.5. Examples 55

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

Reactor constants
value unit

density of the water 𝜌𝑊 997 𝑘𝑔/𝑚3

specific heat capacity of water 𝑐𝑊 4.1851 𝐽/𝑘𝑔𝐾
volume of the water 𝑉𝐻 7.4 𝑚3

thermal conductivity between water and the room 𝑘𝑊𝑅 510 𝑊/𝐾
thermal conductivity between the room and the environment 𝑘𝐺 125 𝑊/𝐾
thermal time constant of the room 𝜏𝐺 260 𝑠

First, we have to implement the outside temperature in the code to define our system dynamics.

t_f = 24
def T_amb(t):
return 2.5 + 7.5*nmpyc.sin((2*nmpyc.pi*t)/t_f - (nmpyc.pi/2))

After that, we can define the right hand side of the system by

rho_W = 997
c_W = 4.1851
V_H = 7.4
k_WR = 510
k_G = 125
thau_G = 260
def f(t,x,u):
y = nmpyc.array(2)
y[0] = (-k_WR/(rho_W*c_W*V_H)*x[0]

+ k_WR/(rho_W*c_W*V_H)*x[1]
+ 1/(rho_W*c_W*V_H)*u[0])

y[1] = (k_WR/(k_G*thau_G)*x[0]
- (k_WR + k_G)/(k_G*thau_G)*x[1]
+ (1/thau_G)*T_amb(t))

return y

And finally initialize the system by

system = nmpyc.system(f, 2, 1, 'continuous', sampling_rate=0.5, method='euler')

In the heating system the conflict between energy and thermal comfort arises. Thus, the stage cost reads

ℓ(𝑥, 𝑢) =
𝑢

𝑃 max
+ (𝑥2 − 𝑇ref)

2,

where 𝑃max = 15000(𝑊) is the maximal power of the heating pump and 𝑇ref = 22∘𝐶 is the desired temperature of
the room. The reference temperature 𝑇ref can be selected differently – depending on the individual thermal comfort.

According to this we can initialize our objective by

P_max = 15000
T_ref = 22
def l(x,u):
return (u[0]/P_max) + (x[1]-T_ref)**2

and implement the control constraint

0 ≤ 𝑢(𝑡) ≤ 𝑃𝑚𝑎𝑥

56 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

as

constraints = nmpyc.constraints()
constraints.add_bound('lower', 'control', nmpyc.array([0]))
constraints.add_bound('upper', 'control', nmpyc.array([P_max]))

After all components of the optimal control problem have been implemented, we can now combine them into a model
and start the MPC loop. For this purpose, we define

𝑥(0) = (22, 19.5)𝑇

and set 𝑁 = 30 and 𝐾 = 500.

model = nmpyc.model(objective,system,constraints)
x0 = nmpyc.array([22., 19.5])
res = model.nmpyc(x0,N,K)

Following the simulation we can visualize the results by calling

res.plot()

which generates the plot bellow.

1.5. Examples 57

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.5.4 2d Investment Problem

To examplify a discounted problem we consider a 2d variant of an investment problem, originally introduced in
[HKHF03] and furhter explored in [GruneSS15].

The system dynamics for this problem are given by

�̇�1(𝑡) = 𝑥2(𝑡)− 𝜎𝑥1(𝑡)

�̇�2(𝑡) = 𝑢(𝑡)

where we set 𝜎 = 0.25 for our calculations.

To implement the dynamics we have to initialize a function that implements the right hand side of the dynamics.

sigma = 0.25
def f(x,u):

y = nmpyc.array(2)
y[0] = x[1]-sigma *x[0]
y[1] = u
return y

After that, the nMPyC system object can be set by calling

system = nmpyc.system(f, 2, 1, 'continuous', sampling_rate=0.2, method='heun')

To model the payoff of the investment problem we assume th stage cost

ℓ(𝑥, 𝑢) = −(𝑅(𝑥1)− 𝑐(𝑥2)− 𝑣(𝑢))

where 𝑅(𝑥1) = 𝑘1
√
𝑥1 − 𝑥1/(1 + 𝑘2𝑥

4
1) is a revenue function of the firm with a convex segment due to increasing

returns. 𝑐(𝑥2) = 𝑐1𝑥2 + 𝑐2𝑥
2
2/2 denotes adjustment costs of investment and 𝑣(𝑢) = 𝛼𝑢2/2 represents adjustment

costs of the change of investment. The convex segment in the payoff function just mentioned is likely to generate two
domains of attraction. Additionally we choose 𝑘1 = 2, 𝑘2 = 0.0117, 𝑐1 = 0.75, 𝑐2 = 2.5 and 𝛼 = 12 for our
computations.

With the nMPyC package the implemnetiation of the objective corresponding to this costs can be done as follws.

def l(x,u):
R = k1*x[0]**(1/2)-x[0]/(1+k2*x[0]**4)
c = c1*x[1]+(c2*x[1]**2)/2
v = (alpha*u[0]**2)/2
return -(R - c - v)

objective = nmpyc.objective(l)

Since this problem is unconstrained we can now initialize our model by

model = nmpyc.model(objective,system)

For our simulation we assume set the discount factor to

𝛽 = 𝑒−𝛿ℎ

where ℎ = 0.2 is our samplimng rate and 𝛿 = 0.04 is the continuous discount rate.

It can now be shown that this problem has two domains of attraction, one at roughly 𝑥* = (0.5, 0.2) and the other
roughly at 𝑥* = (4.2, 1.1). Now we choose ifferent initial values from both domains of attraction to test, if we can

58 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

replicate the two domains of attraction for a finite decision horizon by using nonlinear model predictive control. For
this purpose we set the MPC horizon 𝑁 = 50 and the number of MPC iterations to 𝐾 = 500.

This leads to the following code for running the closed loop simulation for the discounted problem.

discount = nmpyc.exp(-0.04*0.2)
N = 50
K = 500

x0 = nmpyc.array([3.0,0.75])
res1 = nmpyc.mpc(x0,N,K,discount)

x0 = nmpyc.array([5.0,1.75])
res2 = nmpyc.mpc(x0,N,K,discount)

Looking at the phase portraits of the two simulations, we can confirm that we really converge against the two different
equilibria with the closed loop trajectory. The phase portraits of our simulations can be plotted with the nMPyC package
by calling

res1.plot('phase', phase1='x_1', phase2='x_2', show_ol=True)
res2.plot('phase', phase1='x_1', phase2='x_2', show_ol=True)

The option show_ol=True will also plot the pahase portraits of the open loop simulations of each iteration, which
leads the output below.

1.5. Examples 59

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.6 Templates

In addition to the examples, we also provide templates to facilitate the implementation.

To take advantage of the different structures of the problems, we have implemented templates for the following problem
types.

1.6.1 Time-variant Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: continuous or discrete
sampling_rate = 1. # sampling rate h (optional)
t0 = 0. # initial time (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value

(continues on next page)

60 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

discount = 1. # dicount factor (optional)

Define right hand side of the system dynamics
def f(t, x, u):
y = nmpyc.array(nx)
..
return y

Initialize system dynamics
system = nmpyc.system(f, nx, nu, system_type, sampling_rate, t0, method)

Define stage cost
def l(t, x, u):
return ..

Define terminal cost (optional)
def F(t, x):
return ..

Initialize objective
objective = nmpyc.objective(l, F)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (h(t,x,u)=0, optional)
len_eqconstr = .. # number of equality constraints
def h(t, x, u):
c_eq = nmpyc.array(len_eqconstr)
..
return c_eq

constraints.add_constr('eq', h)

Add inequality constraints (g(t,x,u)>=0, optional)
len_ineqconstr = .. # number of inequality constraints
def g(t, x, u):
c_ineq = nmpyc.array(len_ineqconstr)

(continues on next page)

1.6. Templates 61

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

..
return c_ineq

constraints.add_constr('ineq', g)

Add terminal equality constraints (H(t,x)=0, optional)
len_terminaleq = .. # number of terminal equality constraints
def H(t, x):
cend_eq = nmpyc.array(len_terminaleq)
..
return cend_eq

constraints.add_constr('terminal_eq', H)

Add terminal equality constraints (G(t,x)>=0, optional)
len_terminalineq = .. # number of terminal equality constraints
def G(t, x):
cend_ineq = nmpyc.array(len_terminalineq)
..
return cend_ineq

constraints.add_constr('terminal_ineq', G)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

1.6.2 Autonomous Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: contiunous or discrete
sampling_rate = 1. # sampling rate h (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value
discount = 1. # dicount factor (optional)

(continues on next page)

62 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

Define right hand side of the system dynamics
def f(x, u):
y = nmpyc.array(nx)
..
return y

Initialize system dynamics
system = nmpyc.system(f, nx, nu, system_type, sampling_rate, method=method)

Define stage cost
def l(x, u):
return ..

Define terminal cost (optional)
def F(x):
return ..

Initialize objective
objective = nmpyc.objective(l, F)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (h(x,u)=0, optional)
len_eqconstr = .. # number of equality constraints
def h(x, u):
c_eq = nmpyc.array(len_eqconstr)
..
return c_eq

constraints.add_constr('eq', h)

Add inequality constraints (g(x,u)>=0, optional)
len_ineqconstr = .. # number of inequality constraints
def g(x, u):
c_ineq = nmpyc.array(len_ineqconstr)
..
return c_ineq

(continues on next page)

1.6. Templates 63

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

constraints.add_constr('ineq', g)

Add terminal equality constraints (H(x)=0, optional)
len_terminaleq = .. # number of terminal equality constraints
def H(x):
cend_eq = nmpyc.array(len_terminaleq)
..
return cend_eq

constraints.add_constr('terminal_eq', H)

Add terminal equality constraints (G(x)>=0, optional)
len_terminalineq = .. # number of terminal equality constraints
def G(x):
cend_ineq = nmpyc.array(len_terminalineq)
..
return cend_ineq

constraints.add_constr('terminal_ineq', G)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

1.6.3 Linear Quadratic Problem

Import nMPyc package
import nmpyc

Define system parameters
nx = .. # dimension of state
nu = .. # dimension of control
system_type = .. # system type: continuous or discrete
sampling_rate = 1. # sampling rate h (optional)
method = 'cvodes' # integrator (optinal)

Define MPC parameters
N = .. # MPC horizon
K = .. # MPC itertaions
x0 = .. # initial value
discount = 1. # dicount factor (optional)

Define linear right hand side of the system dynamics f(x,u) = Ax + Bu
A = ..

(continues on next page)

64 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

B = ..

Initialize system dynamics
system = nmpyc.system.LQP(A, B, nx, nu, system_type, sampling_rate, method=method)

Define quadratic stage cost l(x,u) = x^TQx + u^TRu + 2*x^TNx
Q = ..
R = ..
N = nmpyc.zeros((nx,nu)) # optional

Define terminal cost x^TPx
P = nmpyc.zeros((nx,nx)) # optional

Initialize objective
objective = nmpyc.objective.LQP(Q, R, N, P)

Define constraints
constraints = nmpyc.constraints()

Add bounds (optional)
lbx = .. # lower bound for states
constraints.add_bound('lower', 'state', lbx)
ubx = .. # upper bound for states
constraints.add_bound('upper', 'state', ubx)
lbu = .. # lower bound for control
constraints.add_bound('lower', 'control', lbu)
ubu = .. # upper bound for control
constraints.add_bound('upper', 'control', ubu)
lbend = .. # lower bound for terminal state
constraints.add_bound('lower', 'terminal', lbend)
ubend = .. # upper bound for terminal state
constraints.add_bound('upper', 'terminal', ubend)

Add equality constraints (Ex + Fu = b, optional)
E_eq = ..
F_eq = ..
b_eq = ..
constraints.add_constr('eq', E_eq, F_eq, b_eq)

Add equality constraints (Ex + Fu >= b, optional)
E_ineq = ..
F_ineq = ..
b_ineq = ..
constraints.add_constr('ineq', E_ineq, F_ineq, b_ineq)

Add terminal equality constraints (Hx = 0, optional)
H_eq = ..
constraints.add_constr('terminal_eq', H_eq)

Add terminal equality constraints (Hx >= 0, optional)
H_ineq = ..
constraints.add_constr('terminal_ineq', H_ineq)

(continues on next page)

1.6. Templates 65

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

(continued from previous page)

Initialize model
model = nmpyc.model(objective, system, constraints)

Start MPC loop
res = model.mpc(x0, N, K, discount)

Plot results
res.plot()

Note: Any problem, whether nonlinear, linear, autonomous, or time-varying, can be initialized as a nonlinear time-
varying optimal control problem. Therefore, you can always fall back on such an implementation. However, if you know
the structure of your problem and this is to be exploited by the program in order to possibly speed up the simulation, it
is necessary to initialize the problem as such.

1.7 FAQ

1.7.1 Why use the nmpyc_array module?

The idea of the nmpyc.nmpyc_array module is to provide a simple syntax for the input, which is similar to the one of
NumPy. At the same time we ensure a switching between symbolic calculation with CasADi and completely numeric
calculations.

A completely numerical calculation is advantageous, for example, if non-differentiable functions have to be evaluated
at critical points, e.g. the norm at the origin. Here the algorithmic differentiation of CasADi can lead to problems.

Therefore this module is built in a way that the array class can automatically switch between CasADi and NumPy
objects. In addition, the individual functions are built in such a way that they recognize the type of the input and call
the appropriate function from NumPy or CasADi accordingly.

1.7.2 What to do if a function is not defined in the nmpyc_array module?

We have tried to implement the most common functions. Nevertheless, it can happen that a certain function that you
need is missing.

If this is the case, there is the possibility to implement an own overload of this function. A good orientation for this is
the already programmed functions in the nmpyc.nmpyc_array module.

Another possibility in such cases is to use the call x.A to access the CasADi or NumPy array in which the entries
of x are stored. Afterwards the appropriate necessary computations can be accomplished with the help of NumPy or
CasADi functions. Note, however, that in this way if applicable no smooth change between numeric and symbolic
calculation is possible.

66 Chapter 1. Contents

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.7.3 Which solver should be used?

In the most cases, the automatic selection of the solver by the program is recommended. In this way, if possible, the
linear quadratic structure of a problem is exploited or at least algorithmic differentiation is still exploited to perform an
advantageous optimization.

However, as already mentioned, this algorithmic differentiation can also lead to problems in some cases. For example, if
a non-differentiable function must be evaluated at critical points, e.g. the norm at the origin. In such cases, a numerical
calculation should be used for the optimization and a SciPy solver, such as SLSQP, should be selected.

1.7.4 Which discretization method should be used?

In our numerical simulations we have experienced that mostly a fixed step integration method like euler is sufficient to
guarantee the necessary accuracy during the simulation. The advantage of these methods is that with them the largest
speed up among the available integrators can be achieved.

However, if it is necessary to achieve higher integration accuracy by an adaptive integration method, one of the CasADi
integrators, e.g. cvodes, should always be chosen if possible.

The SciPy integrators should only be considered as a kind of backup in case the other methods fail, since they lead to
an above-average lag of time during the simulation in our implementation.

1.7.5 What to do if I a LaTeX Error occurs while plotting?

In our experience such errors occur mainly on MacOS if Spyder is used for programming, which in turn is opened via
the Anaconda Navigator. In this case it is sufficient to open spyder directly and not to take the detour via the Anaconda
Navigator to solve the problem.

However, if this procedure does not solve the problem or the problem has another cause, it is also possible to disable
the LaTeX labeling of the plots by setting the option usetex=False. For more details see nmpyc.result.result.
plot().

1.8 How to Cite

If you use nMPyC for published work please cite it as

@misc{nmpyc,
author = {Jonas Schie{\ss}l and Lisa Kr{\"u}gel},
title ={{nMPyC} - A Python library for solving optimal control problems via MPC},
howpublished = {\url{http://nmpyc.readthedocs.io/}},
year = {2022}

}

Please remember to properly cite other software that you might be using too if you use (e.g. CasADi, IPOPT, . . .).

For any specific algorithm, also consider citing the original author’s paper.

1.8. How to Cite 67

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

1.9 References

68 Chapter 1. Contents

BIBLIOGRAPHY

[DAR11] Moritz Diehl, Rishi Amrit, and James B. Rawlings. A lyapunov function for economic optimiz-
ing model predictive control. IEEE Transactions on Automatic Control, 56(3):703–707, mar 2011.
doi:10.1109/TAC.2010.2101291.

[Grune21] Lars Grüne. Mathematical control theory. 2021. Lecture Notes. URL: https://num.math.uni-bayreuth.de/
de/team/lars-gruene/skripten/kontrolltheorie/kt_2021_en.pdf.

[GruneP17] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control : Theory and Algorithms. 2nd
Edition. Communications and Control Engineering. Springer, Cham, Switzerland, 2017. URL: https:
//eref.uni-bayreuth.de/35127/.

[GruneSS15] Lars Grüne, Willi Semmler, and Marleen Stieler. Using nonlinear model predictive control for dynamic
decision problems in economics. Journal of Economic Dynamics and Control, 60:112–133, 2015. URL:
https://eref.uni-bayreuth.de/20841/.

[HKHF03] Josef L. Haunschmied, Peter M. Kort, Richard F. Hartl, and Gustav Feichtinger. A DNS-curve in a two-
state capital accumulation model: a numerical analysis. Journal of Economic Dynamics and Control,
27(4):701–716, feb 2003. doi:10.1016/S0165-1889(01)00070-7.

[LHDI10] Filip Logist, Boris Houska, Moritz Diehl, and Jan Van Impe. Fast pareto set generation for nonlin-
ear optimal control problems with multiple objectives. Structural and Multidisciplinary Optimization,
42(4):591–603, may 2010. doi:10.1007/s00158-010-0506-x.

69

https://doi.org/10.1109/TAC.2010.2101291
https://num.math.uni-bayreuth.de/de/team/lars-gruene/skripten/kontrolltheorie/kt_2021_en.pdf
https://num.math.uni-bayreuth.de/de/team/lars-gruene/skripten/kontrolltheorie/kt_2021_en.pdf
https://eref.uni-bayreuth.de/35127/
https://eref.uni-bayreuth.de/35127/
https://eref.uni-bayreuth.de/20841/
https://doi.org/10.1016/S0165-1889(01)00070-7
https://doi.org/10.1007/s00158-010-0506-x

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

70 Bibliography

PYTHON MODULE INDEX

n
nmpyc.nmpyc_array, 40

71

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

72 Python Module Index

INDEX

A
A (array attribute), 40
abs() (in module nmpyc.nmpyc_array), 44
add_bound() (in module nmpyc.constraints.constraints),

24
add_constr() (in module

nmpyc.constraints.constraints), 25
add_termianlcost() (in module

nmpyc.objective.objective), 19
add_terminalconstr() (in module

nmpyc.constraints.constraints), 25
arccos() (in module nmpyc.nmpyc_array), 44
arccosh() (in module nmpyc.nmpyc_array), 44
arcsin() (in module nmpyc.nmpyc_array), 44
arcsinh() (in module nmpyc.nmpyc_array), 44
arctan() (in module nmpyc.nmpyc_array), 44
arctanh() (in module nmpyc.nmpyc_array), 44
array (class in nmpyc.nmpyc_array), 40
autonomous (objective attribute), 16
autonomous (system attribute), 10

C
concatenate() (in module nmpyc.nmpyc_array), 44
constraints (class in nmpyc.constraints), 21
constraints (model attribute), 28
convert() (in module nmpyc.nmpyc_array), 45
cos() (in module nmpyc.nmpyc_array), 45
cosh() (in module nmpyc.nmpyc_array), 45

D
diag() (in module nmpyc.nmpyc_array), 45
dim (array attribute), 41
discount (objective attribute), 16

E
ellapsed_time (result attribute), 33
ellapsed_time_per_itertaion (result attribute), 34
endcosts() (in module nmpyc.objective.objective), 19
error (result attribute), 34
exp() (in module nmpyc.nmpyc_array), 46
eye() (in module nmpyc.nmpyc_array), 46

F
f (system attribute), 10
fill() (in module nmpyc.nmpyc_array.array), 41
flatten() (in module nmpyc.nmpyc_array.array), 42

H
h (system attribute), 11

I
inf (in module nmpyc.nmpyc_array), 49

J
J() (in module nmpyc.objective.objective), 18

L
l_cl (result attribute), 34
l_ol (result attribute), 34
linear_constr (constraints attribute), 21
load() (in module nmpyc.constraints.constraints), 26
load() (in module nmpyc.model.model), 30
load() (in module nmpyc.objective.objective), 20
load() (in module nmpyc.result.result), 37
load() (in module nmpyc.system.system), 14
log() (in module nmpyc.nmpyc_array), 46
lower_bndend (constraints attribute), 22
lower_bndu (constraints attribute), 22
lower_bndx (constraints attribute), 22
LQP() (in module nmpyc.objective.objective), 18
LQP() (in module nmpyc.system.system), 13

M
matrix_power() (in module nmpyc.nmpyc_array), 46
max() (in module nmpyc.nmpyc_array), 46
method (system attribute), 11
min() (in module nmpyc.nmpyc_array), 47
model (class in nmpyc.model), 27
module

nmpyc.nmpyc_array, 40
mpc() (in module nmpyc.model.model), 31

N
N (model attribute), 27

73

nMPyC - A Python library for solving optimal control problems via MPC, Release 1.0.0

N (result attribute), 33
nmpyc.nmpyc_array

module, 40
nonlinear_constr (constraints attribute), 22
norm() (in module nmpyc.nmpyc_array), 47
nu (system attribute), 11
nx (system attribute), 12

O
objective (class in nmpyc.objective), 15
objective (model attribute), 28
ones() (in module nmpyc.nmpyc_array), 47
opti (model attribute), 28

P
pi (in module nmpyc.nmpyc_array), 49
plot() (in module nmpyc.result.result), 37
power() (in module nmpyc.nmpyc_array), 47

R
reshape() (in module nmpyc.nmpyc_array), 48
result (class in nmpyc.result), 32

S
sampling_rate (result attribute), 34
save() (in module nmpyc.constraints.constraints), 26
save() (in module nmpyc.model.model), 31
save() (in module nmpyc.objective.objective), 20
save() (in module nmpyc.result.result), 39
save() (in module nmpyc.system.system), 14
set_integratorOptions() (in module

nmpyc.system.system), 14
show_errors() (in module nmpyc.result.result), 39
sin() (in module nmpyc.nmpyc_array), 48
sinh() (in module nmpyc.nmpyc_array), 48
solve_ocp() (in module nmpyc.model.model), 31
solver (result attribute), 35
sqrt() (in module nmpyc.nmpyc_array), 48
stagecost (objective attribute), 17
stagecosts() (in module nmpyc.objective.objective), 20
succes (result attribute), 35
sucessfull_itertaions (result attribute), 35
symbolic (array attribute), 41
system (class in nmpyc.system), 9
system (model attribute), 30
system() (in module nmpyc.system.system), 15
system_discrete() (in module nmpyc.system.system),

15
system_type (system attribute), 12

T
T (array attribute), 41
t0 (result attribute), 35

t0 (system attribute), 12
t_cl (result attribute), 35
t_ol (result attribute), 36
tan() (in module nmpyc.nmpyc_array), 48
tanh() (in module nmpyc.nmpyc_array), 48
terminalcost (objective attribute), 17
transpose() (in module nmpyc.nmpyc_array.array), 42
type (constraints attribute), 23
type (objective attribute), 17
type (system attribute), 12

U
u_cl (result attribute), 36
u_ol (result attribute), 36
upper_bndend (constraints attribute), 23
upper_bndu (constraints attribute), 23
upper_bndx (constraints attribute), 24

X
x0 (result attribute), 36
x_cl (result attribute), 36
x_ol (result attribute), 37

Z
zeros() (in module nmpyc.nmpyc_array), 49

74 Index

	Contents
	Installation
	Requirements
	Installation using PIP
	Installation by Source

	Getting Started
	Import nMPyC
	Creating the System Dynamics
	Creating the Objective
	Creating the Constraints
	Running Simulations
	Advanced topics

	Basics of model predictive control
	Optimal control problems
	The basic MPC algorithm
	Notes and extensions
	Further reading

	API Reference
	system
	autonomous
	f
	h
	method
	nu
	nx
	system_type
	t0
	type
	LQP
	load
	save
	set_integratorOptions
	system
	system_discrete

	objective
	autonomous
	discount
	stagecost
	terminalcost
	type
	J
	LQP
	add_termianlcost
	endcosts
	load
	save
	stagecosts

	constraints
	linear_constr
	lower_bndend
	lower_bndu
	lower_bndx
	nonlinear_constr
	type
	upper_bndend
	upper_bndu
	upper_bndx
	add_bound
	add_constr
	add_terminalconstr
	load
	save

	model
	N
	constraints
	objective
	opti
	system
	load
	mpc
	save
	solve_ocp

	result
	N
	ellapsed_time
	ellapsed_time_per_itertaion
	error
	l_cl
	l_ol
	sampling_rate
	solver
	succes
	sucessfull_itertaions
	t0
	t_cl
	t_ol
	u_cl
	u_ol
	x0
	x_cl
	x_ol
	load
	plot
	save
	show_errors

	nmpyc_array
	array
	A
	T
	dim
	symbolic
	fill
	flatten
	transpose

	abs
	arccos
	arccosh
	arcsin
	arcsinh
	arctan
	arctanh
	concatenate
	convert
	cos
	cosh
	diag
	exp
	eye
	log
	matrix_power
	max
	min
	norm
	ones
	power
	reshape
	sin
	sinh
	sqrt
	tan
	tanh
	zeros
	inf
	pi

	Examples
	Chemical Reactor
	Inverted Pendulum
	Heat Pump
	2d Investment Problem

	Templates
	Time-variant Problem
	Autonomous Problem
	Linear Quadratic Problem

	FAQ
	Why use the nmpyc_array module?
	What to do if a function is not defined in the nmpyc_array module?
	Which solver should be used?
	Which discretization method should be used?
	What to do if I a LaTeX Error occurs while plotting?

	How to Cite
	References

	Bibliography
	Python Module Index
	Index

